Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 235(5): 1757-1766, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35835139

RESUMEN

Recent studies have suggested that in certain environments, tree stems emit methane (CH4 ). This study explored the mechanism of CH4 emission from the stem surfaces of Alnus japonica in a riparian wetland. Stem CH4 emission rates and sap flux were monitored year-round, and fine-root anatomy was investigated. CH4 emission rates were estimated using a closed-chamber method. Sap flux was measured using Granier-type thermal dissipation probes. Root anatomy was studied using both optical and cryo-scanning electron microscopy. CH4 emissions during the leafy season exhibited a diurnally changing component superimposed upon an underlying continuum in which the diurnal variation was in phase with sap flux. We propose a model in which stem CH4 emission involves at least two processes: a sap flux-dependent component responsible for the diurnal changes, and a sap flux-independent component responsible for the background continuum. The contribution ratios of the two processes are season-dependent. The background continuum possibly resulted from the diffusive transport of gaseous CH4 from the roots to the upper trunk. Root anatomy analysis indicated that the intercellular space of the cortex and empty xylem cells in fine roots could serve as a passageway for transport of gaseous CH4 .


Asunto(s)
Alnus , Metano , Metano/análisis , Estaciones del Año , Suelo , Árboles , Humedales
2.
J Plant Res ; 133(2): 175-191, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31858360

RESUMEN

The physiological response of trees to drought is crucial for understanding the risk of mortality and its feedbacks to climate under the increase in droughts due to climate change, especially for the largest trees in tropical rainforests because of their large contribution to total carbon storage and water use. We determined the response of the mean canopy stomatal conductance per unit leaf area (gs) and whole-tree hydraulic conductance (Gp) of the largest individuals (38-53 m in height) of a typical canopy tree species in a Bornean tropical rainforest, Dryobalanops aromatica C.F.Gaertn., to soil moisture reduction by a 4-month rainfall exclusion experiment (REE) based on the measurements of sap flux and leaf water potentials at midday and dawn. In the mesic condition, the gs at vapor pressure deficit (D) = 1 kPa (gsref) was small compared with the reported values in various biomes. The sensitivity of gs to D (m) at a given gsref (m/gsref) was ≥ 0.6 irrespective of soil moisture conditions, indicating intrinsically sensitive stomatal control with increasing D. The REE caused greater soil drought and decreased the mean leaf water potentials at midday and dawn to the more negative values than the control under the relatively dry conditions due to natural reduction in rainfall. However, the REE did not cause a greater decrease in gs nor any clear alteration in the sensitivity of gs to D compared with the control, and induced greater decreases in Gp during REE than the control. Thus, though the small gs and the sensitive stomatal response to D indicate the water saving characteristics of the studied trees under usual mesic conditions, their limited stomatal regulation in response to soil drought by REE and the resulting decline in Gp might suggest a poor resistance to the unusually severe drought expected in the future.


Asunto(s)
Dipterocarpaceae/fisiología , Sequías , Estomas de Plantas/fisiología , Transpiración de Plantas , Bosque Lluvioso , Hojas de la Planta/fisiología , Suelo , Árboles , Agua
3.
Tree Physiol ; 34(3): 285-301, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24646689

RESUMEN

The rapid and widespread expansion of rubber plantations in Southeast Asia necessitates a greater understanding of tree physiology and the impacts of water consumption on local hydrology. Sap flow measurements were used to study the intra- and inter-annual variations in transpiration rate (Et) in a rubber stand in the low-elevation plain of central Cambodia. Mean stand sap flux density (JS) indicates that rubber trees actively transpire in the rainy season, but become inactive in the dry season. A sharp, brief drop in JS occurred simultaneously with leaf shedding in the middle of the dry season in January. Although the annual maxima of JS were approximately the same in the two study years, the maximum daily stand Et of ∼2.0 mm day(-1) in 2010 increased to ∼2.4 mm day(-1) in 2011. Canopy-level stomatal response was well explained by changes in solar radiation, vapor pressure deficit, soil moisture availability, leaf area, and stem diameter. Rubber trees had a relatively small potential to transpire at the beginning of the study period, compared with average diffuse-porous species. After 2 years of growth in stem diameter, transpiration potential was comparable to other species. The sensitivity of canopy conductance (gc) to atmospheric drought indicates isohydric behavior of rubber trees. Modeling also predicted a relatively small sensitivity of gc to the soil moisture deficit and a rapid decrease in gc under extreme drought conditions. However, annual observations suggest the possibility of a change in leaf characteristics with tree maturity and/or initiation of latex tapping. The estimated annual stand Et was 469 mm year(-1) in 2010, increasing to 658 mm year(-1) in 2011. Diagnostic analysis using the derived gc model showed that inter-annual change in stand Et in the rapidly growing young rubber stand was determined mainly by tree growth rate, not by differences in air and soil variables in the surrounding environment. Future research should focus on the potentially broad applicability of the relationship between Et and tree size as well as environmental factors at stands different in terms of clonal type and age.


Asunto(s)
Transpiración de Plantas/fisiología , Goma/metabolismo , Cambodia , Conceptos Meteorológicos , Modelos Biológicos , Exudados de Plantas/fisiología , Hojas de la Planta/fisiología , Tallos de la Planta/fisiología , Estaciones del Año , Árboles/fisiología
4.
Tree Physiol ; 30(6): 748-60, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20392878

RESUMEN

Japanese beech (Fagus crenata Blume) is widely distributed across the Japan archipelago. This species requires morphological and physiological plasticity to cope with the diverse environmental conditions across its geographical range. In this study, we monitored transpiration (E) to examine plasticity mechanisms as an example of geographical variation in whole-tree water use. We determined E by measuring the sap flux of Japanese beech trees in three stands: Kuromatsunai (KR), Kawatabi (KW) and Shiiba (SH), which were located in different areas in Japan. We conducted biometric measurements to characterize leaf and crown morphology and evaluated geographical variations in E characteristics, such as canopy aerodynamic conductance, canopy stomatal conductance (G(S)) and decoupling coefficient (Omega). Leaf morphology and crown shape showed clear geographical clines. Individual leaf areas decreased in the order KR > KW > SH. The crown shape in the KR and KW stands was cylindrical but planar in the SH stand. We evaluated the effects of leaf and crown morphology on E characteristics. The Omega values showed that, while E in the KW and SH stands was highly sensitive to G(S) and atmospheric evaporative demand, E in the KR stand was sensitive to radiative energy. To maximize carbon gain without further water loss, trees maintain a high G(S) in a moist habitat. For example, the KR trees may decrease E by reducing their absorbed radiation energy by adjusting the individual leaf size and crown structure. Our results indicate that the geographical variation in the water use pattern of Japanese beech is determined by the interaction between its physiological and morphological status.


Asunto(s)
Fagus/fisiología , Transpiración de Plantas/fisiología , Técnicas Biosensibles , Cloroplastos/genética , Cloroplastos/metabolismo , ADN de Plantas/genética , Ecosistema , Fagus/genética , Fagus/crecimiento & desarrollo , Geografía , Japón , Meteoroides , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Energía Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...