Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Endocr Soc ; 6(4): bvac027, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35284773

RESUMEN

Parathyroid hormone (PTH) increases fibroblast growth factor 23 (FGF23), mediated both by protein kinase A (PKA) and Wnt signaling, and decreases expression of sclerostin, a Wnt antagonist derived from osteocytes. Patients with primary hyperparathyroidism (PHPT) have lower serum sclerostin levels than healthy controls, consistent with the idea of SOST downregulation by PTH. Nevertheless, the relationship between FGF23 and sclerostin in PHPT is still unclear. We examined this issue in a mouse model of PHPT. PHPT mice had increased FGF23 and decreased sclerostin expression in calvaria and in their serum concentrations compared with wild-type (WT) mice. In UMR106 osteoblasts, PTH increased Fgf23 expression and decreased Sost expression, as well as forskolin, a PKA agonist, whereas inhibition of PKA reversed the changes in Fgf23 and Sost expression, stimulated by PTH. Sclerostin treatment had no effect on Fgf23 expression, but when it was added together with PTH, it statistically significantly abrogated the increase in Fgf23 expression. By contrast, there was no statistically significant correlation between serum FGF23 and sclerostin, whereas PTH was positively and negatively correlated with serum FGF23 and sclerostin, respectively. These results indicate that the high level of PTH in PHPT mice leads to increased FGF23 and decreased sclerostin expression in serum and calvaria. A decrease of sclerostin may further augment FGF23 in vitro; however, there was no statistically significant association between circulating FGF23 and sclerostin. It is suggested that the pathogenesis of increased FGF23 expression in PHPT mice may be modified by not only sclerostin, but also other regulatory factors modulated by PTH.

2.
J Bone Miner Metab ; 39(3): 430-438, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33196900

RESUMEN

INTRODUCTION: Etelcalcetide binds to the extracellular domain of the calcium-sensing receptor (CaSR), while cinacalcet binds to the 7-transmembrane domain of the CaSR; however, it is unknown, whether etelcalcetide has similar effects to cinacalcet on parathyroid hormone (PTH) secretion. MATERIALS AND METHODS: The PTH-calcium setpoint and maximum and minimum PTH secretion were determined using an 'in vivo setpoint analyses.' The PTH-calcium setpoint was obtained in a mouse model of primary hyperparathyroidism (PC) and wild-type (WT) mice, with PC mice divided into two groups. The setpoint was obtained after 7 days of etelcalcetide (3.0 mg/kg BW/day) or vehicle administration via anosmotic pump. After 7 days of crossover administration, the setpoint was obtained again. Parathyroid glands were obtained after crossover administration, and CaSR expression was analyzed by immunohistochemistry. RESULTS: Etelcalcetide administration significantly decreased the setpoint from 9.03 ± 0.56 mg/dL to 6.80 ± 0.28 mg/dL, which was restored to 8.81 ± 0.38 mg/dL after vehicle administration. In the second group of mice, vehicle administration did not alter the setpoint (8.84 ± 0.69 mg/dL to 8.98 ± 0.63 mg/dL), but subsequent etelcalcetide administration significantly decreased it to 7.10 ± 0.72 mg/dL. There was no significant change in maximum and minimum PTH secretion. Expression levels of parathyroid CaSR were lower in PC mice than in WT mice; however, no significant differences were observed between the two mouse groups. CONCLUSION: Etelcalcetide decreased the PTH-calcium setpoint without changing maximum and minimum PTH secretion in PC mice, suggesting that like cinacalcet, etelcalcetide has calcimimetic potency.


Asunto(s)
Calcio/metabolismo , Hiperparatiroidismo Primario/tratamiento farmacológico , Hormona Paratiroidea/metabolismo , Péptidos/uso terapéutico , Animales , Calcio/sangre , Creatinina/sangre , Humanos , Hiperparatiroidismo Primario/sangre , Magnesio/sangre , Masculino , Ratones Transgénicos , Glándulas Paratiroides/metabolismo , Glándulas Paratiroides/patología , Hormona Paratiroidea/sangre , Péptidos/administración & dosificación , Péptidos/farmacología , Fosfatos/sangre , Receptores Sensibles al Calcio/metabolismo , Factores de Tiempo
3.
Endocrinology ; 160(5): 1348-1358, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30916761

RESUMEN

Fibroblast growth factor 23 (FGF23) secretion is facilitated by the PTH, particularly in hyperparathyroidism. The PTH also attenuates dentin matrix protein 1 (DMP1), which is produced by osteocytes to contribute to bone mineralization and suppress FGF23 expression. Nevertheless, it remains unknown whether attenuated DMP1 affects FGF23 expression in hyperparathyroidism. We examined their expression in bone tissue using a mouse model of primary hyperparathyroidism (PHPT). PHPT mice increased serum FGF23 levels, along with a high level of serum PTH. Fgf23 expression increased, and Dmp1 decreased significantly in the calvaria of PHPT mice compared with wild-type mice and primary osteoblasts treated with PTH. In UMR106 mature osteoblasts, PTH increased Fgf23 expression and decreased Dmp1 expression, and stimulation of protein kinase A (PKA) signaling by forskolin also increased Fgf23 expression and decreased Dmp1 expression in a dose-dependent manner, whereas inhibition of PKA signaling with 10-5 M H89 reversed the changes in Fgf23 and Dmp1 expression when cells were stimulated with PTH. Silencing Dmp1 along with PTH treatment led to an additive increase in Fgf23 expression, accompanied by additive phosphorylation of the cAMP-response element-binding protein. These results indicate that persistent and high levels of PTH lead to the continuous activation of PKA signaling in osteoblasts/osteocytes, resulting in an increase in FGF23 and a decrease in DMP1 in bone. Moreover, suppression of DMP1 enhanced FGF23 expression in PHPT, besides having a direct effect on PTH. These mechanisms may describe one of the pathogeneses behind the increase in FGF23 transcription in bone tissue in patients with PHPT.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hiperparatiroidismo Primario/metabolismo , Cráneo/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Proteínas de la Matriz Extracelular/genética , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/genética , Expresión Génica/efectos de los fármacos , Humanos , Hiperparatiroidismo Primario/genética , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Hormona Paratiroidea/sangre , Hormona Paratiroidea/farmacología , Interferencia de ARN , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA