Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38267027

RESUMEN

All animals must maintain genome and proteome integrity, especially when experiencing endogenous or exogenous stress. To cope, organisms have evolved sophisticated and conserved response systems: unfolded protein responses (UPRs) ensure proteostasis, while DNA damage responses (DDRs) maintain genome integrity. Emerging evidence suggests that UPRs and DDRs crosstalk, but this remains poorly understood. Here, we demonstrate that depletion of the DNA primases pri-1 or pri-2, which synthesize RNA primers at replication forks and whose inactivation causes DNA damage, activates the UPR of the endoplasmic reticulum (UPR-ER) in Caenorhabditis elegans, with especially strong activation in the germline. We observed activation of both the inositol-requiring-enzyme 1 (ire-1) and the protein kinase RNA-like endoplasmic reticulum kinase (pek-1) branches of the (UPR-ER). Interestingly, activation of the (UPR-ER) output gene heat shock protein 4 (hsp-4) was partially independent of its canonical activators, ire-1 and X-box binding protein (xbp-1), and instead required the third branch of the (UPR-ER), activating transcription factor 6 (atf-6), suggesting functional redundancy. We further found that primase depletion specifically induces the (UPR-ER), but not the distinct cytosolic or mitochondrial UPRs, suggesting that primase inactivation causes compartment-specific rather than global stress. Functionally, loss of ire-1 or pek-1 sensitizes animals to replication stress caused by hydroxyurea. Finally, transcriptome analysis of pri-1 embryos revealed several deregulated processes that could cause (UPR-ER) activation, including protein glycosylation, calcium signaling, and fatty acid desaturation. Together, our data show that the (UPR-ER), but not other UPRs, responds to replication fork stress and that the (UPR-ER) is required to alleviate this stress.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , ADN Primasa/genética , ADN Primasa/metabolismo , Respuesta de Proteína Desplegada , Proteínas de Ciclo Celular/genética , Daño del ADN , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética
2.
Front Physiol ; 14: 1241591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645565

RESUMEN

The genome of Caenorhabditis elegans encodes 284 nuclear hormone receptor, which perform diverse functions in development and physiology. One of the best characterized of these is NHR-49, related in sequence and function to mammalian hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor α. Initially identified as regulator of lipid metabolism, including fatty acid catabolism and desaturation, additional important roles for NHR-49 have since emerged. It is an essential contributor to longevity in several genetic and environmental contexts, and also plays vital roles in the resistance to several stresses and innate immune response to infection with various bacterial pathogens. Here, we review how NHR-49 is integrated into pertinent signaling circuits and how it achieves its diverse functions. We also highlight areas for future investigation including identification of regulatory inputs that drive NHR-49 activity and identification of tissue-specific gene regulatory outputs. We anticipate that future work on this protein will provide information that could be useful for developing strategies to age-associated declines in health and age-related human diseases.

3.
Phys Chem Chem Phys ; 25(17): 12469-12478, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37097103

RESUMEN

We have calculated the current density induced by an external magnetic field in a set of figure-eight-shaped expanded porphyrinoids. The studied octaphyrins can be divided into three classes (N2, N4, and N6) based on the number of the inner hydrogen atoms of the pyrrole rings. Using the Runge-Kutta method, the current density is split into diatropic and paratropic contributions that are analyzed separately. The calculations show that one common ring current consists of two rather independent pathways. Each of them follows the outer side of the molecular frame of one half of the molecule and passes to the inner side of the frame on the other half. The ring-current pathways are similar to the ones for [12]infinitene. However, the current density of the octaphyrins is more complex having many branching points and pathways. Vertical through-space current-density pathways pass in the middle of the molecules through a plane that is parallel to the figure-eight-shaped view of the molecules when the magnetic field is perpendicular to the plane. The isolectronic N2 and the N4 dication sustain a weak paratropic ring current inside the molecule, which is also observed in the 1H NMR magnetic shielding constant of the inner hydrogen atoms. The diatropic current-density contribution dominates in the studied molecules. For the N4 and N6 molecules, the global current-density pathways are only diatropic and N6 sustains the strongest global diatropic current-density flux of 13.2 nA T-1.

4.
G3 (Bethesda) ; 13(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37075089

RESUMEN

The micronutrient vitamin B12 is an essential cofactor for two enzymes: methionine synthase, which plays a key role in the one-carbon cycle; and methylmalonyl-CoA mutase, an enzyme in a pathway that breaks down branched-chain amino acids and odd-chain fatty acids. A second, vitamin B12-independent pathway that degrades propionic acid was recently described in Caenorhabditis elegans, the propionate shunt pathway. Activation of five shunt pathway genes in response to low vitamin B12 availability or high propionic acid levels is accomplished by a transcriptional regulatory mechanism involving two nuclear hormone receptors, NHR-10 and NHR-68. Here, we report that the C. elegans Mediator subunit mdt-15 is also essential for the activation of the propionate shunt pathway genes, likely by acting as a transcriptional coregulator for NHR-10. C. elegans mdt-15 mutants fed with a low vitamin B12 diet have transcriptomes resembling those of wild-type worms fed with a high vitamin B12 diet, with low expression of the shunt genes. Phenotypically, the embryonic lethality of mdt-15 mutants is specifically rescued by diets high in vitamin B12, but not by dietary polyunsaturated fatty acids, which rescue many other phenotypes of the mdt-15 mutants. Finally, NHR-10 binds to MDT-15 in yeast two-hybrid assays, and the transcriptomes of nhr-10 mutants share overlap with those of mdt-15 mutants. Our data show that MDT-15 is a key coregulator for an NHR regulating propionic acid detoxification, adding to roles played by NHR:MDT-15 partnerships in metabolic regulation and pinpointing vitamin B12 availability as a requirement for mdt-15 dependent embryonic development.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Propionatos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Vitamina B 12/metabolismo , Factores de Transcripción/genética
5.
PLoS One ; 18(2): e0281887, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36821579

RESUMEN

Gut microbiota has been established as a main regulator of health. However, how changes in gut microbiota are directly associated with physiological and cellular alterations has been difficult to tackle on a large-scale basis, notably because of the cost and labor-extensive resources required for rigorous experiments in mammals. In the present study, we used the nematode Caenorhabditis elegans as a model organism to elucidate microbiota-host interactions. We developed a method to extract gut microbiota (MCB) from murine feces, and tested its potential as food source for and its impact on C. elegans biology compared to the standard bacterial diet Escherichia coli OP50. Although less preferred than OP50, MCB was not avoided but had a lower energy density (triglycerides and glucose). Consistently, MCB-fed worms exhibited smaller body length and size, lower fertility, and lower fat content than OP50-fed worms, but had a longer mean lifespan, which resembles the effects of calorie restriction in mammals. However, these outcomes were altered when bacteria were inactivated, suggesting an important role of symbiosis of MCB beyond nutrient source. Taken together, our findings support the effectiveness of gut MCB processing to test its effects in C. elegans. More work comparing MCB of differently treated mice or humans is required to further validate relevance to mammals before large-scale screening assays.


Asunto(s)
Caenorhabditis elegans , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Caenorhabditis elegans/fisiología , Escherichia coli/fisiología , Longevidad/fisiología , Mamíferos
6.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35368077

RESUMEN

Survival analysis is a technique for identifying prognostic biomarkers and genetic vulnerabilities in cancer studies. Large-scale consortium-based projects have profiled >11 000 adult and >4000 pediatric tumor cases with clinical outcomes and multiomics approaches. This provides a resource for investigating molecular-level cancer etiologies using clinical correlations. Although cancers often arise from multiple genetic vulnerabilities and have deregulated gene sets (GSs), existing survival analysis protocols can report only on individual genes. Additionally, there is no systematic method to connect clinical outcomes with experimental (cell line) data. To address these gaps, we developed cSurvival (https://tau.cmmt.ubc.ca/cSurvival). cSurvival provides a user-adjustable analytical pipeline with a curated, integrated database and offers three main advances: (i) joint analysis with two genomic predictors to identify interacting biomarkers, including new algorithms to identify optimal cutoffs for two continuous predictors; (ii) survival analysis not only at the gene, but also the GS level; and (iii) integration of clinical and experimental cell line studies to generate synergistic biological insights. To demonstrate these advances, we report three case studies. We confirmed findings of autophagy-dependent survival in colorectal cancers and of synergistic negative effects between high expression of SLC7A11 and SLC2A1 on outcomes in several cancers. We further used cSurvival to identify high expression of the Nrf2-antioxidant response element pathway as a main indicator for lung cancer prognosis and for cellular resistance to oxidative stress-inducing drugs. Altogether, these analyses demonstrate cSurvival's ability to support biomarker prognosis and interaction analysis via gene- and GS-level approaches and to integrate clinical and experimental biomedical studies.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Pulmonares , Adulto , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular , Niño , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Análisis de Supervivencia
7.
Elife ; 112022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35285794

RESUMEN

The response to insufficient oxygen (hypoxia) is orchestrated by the conserved hypoxia-inducible factor (HIF). However, HIF-independent hypoxia response pathways exist that act in parallel with HIF to mediate the physiological hypoxia response. Here, we describe a hypoxia response pathway controlled by Caenorhabditis elegans nuclear hormone receptor NHR-49, an orthologue of mammalian peroxisome proliferator-activated receptor alpha (PPARα). We show that nhr-49 is required for animal survival in hypoxia and is synthetic lethal with hif-1 in this context, demonstrating that these factors act in parallel. RNA-seq analysis shows that in hypoxia nhr-49 regulates a set of genes that are hif-1-independent, including autophagy genes that promote hypoxia survival. We further show that nuclear hormone receptor nhr-67 is a negative regulator and homeodomain-interacting protein kinase hpk-1 is a positive regulator of the NHR-49 pathway. Together, our experiments define a new, essential hypoxia response pathway that acts in parallel with the well-known HIF-mediated hypoxia response.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Mamíferos/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Elife ; 102021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33978570

RESUMEN

The model organism Caenorhabditis elegans mounts transcriptional defense responses against intestinal bacterial infections that elicit overlapping starvation and infection responses, the regulation of which is not well understood. Direct comparison of C. elegans that were starved or infected with Staphylococcus aureus revealed a large infection-specific transcriptional signature, which was almost completely abrogated by deletion of transcription factor hlh-30/TFEB, except for six genes including a flavin-containing monooxygenase (FMO) gene, fmo-2/FMO5. Deletion of fmo-2/FMO5 severely compromised infection survival, thus identifying the first FMO with innate immunity functions in animals. Moreover, fmo-2/FMO5 induction required the nuclear hormone receptor, NHR-49/PPAR-α, which controlled host defense cell non-autonomously. These findings reveal an infection-specific host response to S. aureus, identify HLH-30/TFEB as its main regulator, reveal FMOs as important innate immunity effectors in animals, and identify the mechanism of FMO regulation through NHR-49/PPAR-α during S. aureus infection, with implications for host defense and inflammation in higher organisms.


Asunto(s)
Caenorhabditis elegans/inmunología , Inmunidad Innata , Oxigenasas/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/metabolismo , Privación de Alimentos , Oxigenasas/genética , PPAR alfa/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/fisiología
9.
Nucleic Acids Res ; 49(W1): W207-W215, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34019643

RESUMEN

Transcriptome profiling is essential for gene regulation studies in development and disease. Current web-based tools enable functional characterization of transcriptome data, but most are restricted to applying gene-list-based methods to single datasets, inefficient in leveraging up-to-date and species-specific information, and limited in their visualization options. Additionally, there is no systematic way to explore data stored in the largest transcriptome repository, NCBI GEO. To fill these gaps, we have developed eVITTA (easy Visualization and Inference Toolbox for Transcriptome Analysis; https://tau.cmmt.ubc.ca/eVITTA/). eVITTA provides modules for analysis and exploration of studies published in NCBI GEO (easyGEO), detailed molecular- and systems-level functional profiling (easyGSEA), and customizable comparisons among experimental groups (easyVizR). We tested eVITTA on transcriptomes of SARS-CoV-2 infected human nasopharyngeal swab samples, and identified a downregulation of olfactory signal transducers, in line with the clinical presentation of anosmia in COVID-19 patients. We also analyzed transcriptomes of Caenorhabditis elegans worms with disrupted S-adenosylmethionine metabolism, confirming activation of innate immune responses and feedback induction of one-carbon cycle genes. Collectively, eVITTA streamlines complex computational workflows into an accessible interface, thus filling the gap of an end-to-end platform capable of capturing both broad and granular changes in human and model organism transcriptomes.


Asunto(s)
Visualización de Datos , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Internet , Transcriptoma/genética , Animales , COVID-19/genética , COVID-19/virología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Humanos , Inmunidad Innata , Nasofaringe/virología , S-Adenosilmetionina/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Especificidad de la Especie , Flujo de Trabajo
10.
J Toxicol Environ Health B Crit Rev ; 24(2): 51-94, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33616007

RESUMEN

Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.


Asunto(s)
Caenorhabditis elegans/metabolismo , Preparaciones Farmacéuticas/metabolismo , Xenobióticos/metabolismo , Animales , Transporte Biológico/fisiología , Ecotoxicología/métodos , Humanos , Modelos Animales , Especificidad de la Especie , Toxicología/métodos
11.
Chemistry ; 27(16): 5283-5291, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33427343

RESUMEN

Mildly thermal air or HNO3 oxidized activated carbons catalyse oxidative dehydrogenative couplings of benzo[b]fused heteroaryl 2,2'-dimers, e.g., 2-(benzofuran-2-yl)-1H-indole, to chiral 3,3'-coupled cyclooctatetraenes or carbazole-type migrative products under O2 atmosphere. DFT calculations show that the radical cation and the Scholl-type arenium cation mechanisms lead to different products with 2-(benzofuran-2-yl)-1H-indole, being in accord with experimental product distributions.

12.
Metabolites ; 11(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466824

RESUMEN

Biological membranes are not only essential barriers that separate cellular and subcellular structures, but also perform other critical functions such as the initiation and propagation of intra- and intercellular signals. Each membrane-delineated organelle has a tightly regulated and custom-made membrane lipid composition that is critical for its normal function. The endoplasmic reticulum (ER) consists of a dynamic membrane network that is required for the synthesis and modification of proteins and lipids. The accumulation of unfolded proteins in the ER lumen activates an adaptive stress response known as the unfolded protein response (UPR-ER). Interestingly, recent findings show that lipid perturbation is also a direct activator of the UPR-ER, independent of protein misfolding. Here, we review proteostasis-independent UPR-ER activation in the genetically tractable model organism Caenorhabditis elegans. We review the current knowledge on the membrane lipid composition of the ER, its impact on organelle function and UPR-ER activation, and its potential role in human metabolic diseases. Further, we summarize the bi-directional interplay between lipid metabolism and the UPR-ER. We discuss recent progress identifying the different respective mechanisms by which disturbed proteostasis and lipid bilayer stress activate the UPR-ER. Finally, we consider how genetic and metabolic disturbances may disrupt ER homeostasis and activate the UPR and discuss how using -omics-type analyses will lead to more comprehensive insights into these processes.

13.
J Cell Biol ; 219(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32349127

RESUMEN

Membrane integrity at the endoplasmic reticulum (ER) is tightly regulated, and its disturbance is implicated in metabolic diseases. Using an engineered sensor that activates the unfolded protein response (UPR) exclusively when normal ER membrane lipid composition is compromised, we identified pathways beyond lipid metabolism that are necessary to maintain ER integrity in yeast and in C. elegans. To systematically validate yeast mutants that disrupt ER membrane homeostasis, we identified a lipid bilayer stress (LBS) sensor in the UPR transducer protein Ire1, located at the interface of the amphipathic and transmembrane helices. Furthermore, transcriptome and chromatin immunoprecipitation analyses pinpoint the UPR as a broad-spectrum compensatory response wherein LBS and proteotoxic stress deploy divergent transcriptional UPR programs. Together, these findings reveal the UPR program as the sum of two independent stress responses, an insight that could be exploited for future therapeutic intervention.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Estrés del Retículo Endoplásmico/genética , Proteínas de Choque Térmico/genética , Membrana Dobles de Lípidos/química , Glicoproteínas de Membrana/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Respuesta de Proteína Desplegada , Animales , Técnicas Biosensibles , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/química , Cromatina/metabolismo , Retículo Endoplásmico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Choque Térmico/metabolismo , Homeostasis/genética , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Membrana Dobles de Lípidos/metabolismo , Metabolismo de los Lípidos/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Proteína Fluorescente Roja
14.
PLoS Genet ; 15(12): e1008508, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31815936

RESUMEN

Zinc is essential for cellular functions as it is a catalytic and structural component of many proteins. In contrast, cadmium is not required in biological systems and is toxic. Zinc and cadmium levels are closely monitored and regulated as their excess causes cell stress. To maintain homeostasis, organisms induce metal detoxification gene programs through stress responsive transcriptional regulatory complexes. In Caenorhabditis elegans, the MDT-15 subunit of the evolutionarily conserved Mediator transcriptional coregulator is required to induce genes upon exposure to excess zinc and cadmium. However, the regulatory partners of MDT-15 in this response, its role in cellular and physiological stress adaptation, and the putative role for mammalian MED15 in the metal stress responses remain unknown. Here, we show that MDT-15 interacts physically and functionally with the Nuclear Hormone Receptor HIZR-1 to promote molecular, cellular, and organismal adaptation to cadmium and excess zinc. Using gain- and loss-of-function mutants and qRT-PCR and reporter analysis, we find that mdt-15 and hizr-1 cooperate to induce zinc and cadmium responsive genes. Moreover, the two proteins interact physically in yeast-two-hybrid assays and this interaction is enhanced by the addition of zinc or cadmium, the former a known ligand of HIZR-1. Functionally, mdt-15 and hizr-1 mutants show defective storage of excess zinc in the gut and are hypersensitive to zinc-induced reductions in egg-laying. Furthermore, mdt-15 but not hizr-1 mutants are hypersensitive to cadmium-induced reductions in egg-laying, suggesting potential divergence of regulatory pathways. Lastly, mammalian MDT-15 orthologs bind genomic regulatory regions of metallothionein and zinc transporter genes in a cadmium and zinc-stimulated fashion, and human MED15 is required to induce a metallothionein gene in lung adenocarcinoma cells exposed to cadmium. Collectively, our data show that mdt-15 and hizr-1 cooperate to regulate cadmium detoxification and zinc storage and that this mechanism is at least partially conserved in mammals.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Zinc/toxicidad , Animales , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Factor Nuclear 4 del Hepatocito/genética , Humanos , Metalotioneína/genética , Mutación , Regiones Promotoras Genéticas , Receptores Citoplasmáticos y Nucleares/genética , Estrés Fisiológico , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
15.
PLoS Biol ; 17(8): e3000415, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31408455

RESUMEN

Low temperatures delay aging and promote longevity in many organisms. However, the metabolic and homeostatic aspects of low-temperature-induced longevity remain poorly understood. Here, we show that lipid homeostasis regulated by Caenorhabditis elegans Mediator 15 (MDT-15 or MED15), a transcriptional coregulator, is essential for low-temperature-induced longevity and proteostasis. We find that inhibition of mdt-15 prevents animals from living long at low temperatures. We show that MDT-15 up-regulates fat-7, a fatty acid desaturase that converts saturated fatty acids (SFAs) to unsaturated fatty acids (UFAs), at low temperatures. We then demonstrate that maintaining a high UFA/SFA ratio is essential for proteostasis at low temperatures. We show that dietary supplementation with a monounsaturated fatty acid, oleic acid (OA), substantially mitigates the short life span and proteotoxicity in mdt-15(-) animals at low temperatures. Thus, lipidostasis regulated by MDT-15 appears to be a limiting factor for proteostasis and longevity at low temperatures. Our findings highlight the crucial roles of lipid regulation in maintaining normal organismal physiology under different environmental conditions.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Longevidad/fisiología , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans , Frío , Suplementos Dietéticos , Ácido Graso Desaturasas/metabolismo , Homeostasis , Metabolismo de los Lípidos , Ácido Oléico/administración & dosificación , Proteostasis , Activación Transcripcional
16.
PLoS Biol ; 17(4): e3000236, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31002662

RESUMEN

The ability to adapt to acute and chronic stress is important for organisms to thrive in evolutionary niches and for cells to survive in adverse conditions. The regulatory networks that control stress responses are evolutionarily conserved, and many factors that selectively activate stress responses have been identified. Less well understood are mechanisms that guard against unnecessary induction of cytoprotective factors and that connect stress responses with cellular metabolism to control energy expenditure during stress. The work of Riahi and colleagues represents important progress in this regard because it identifies the histone methyltransferase G9a as a modulator of oxidative stress responses. G9a dampens the expression of antioxidant genes, thus preventing inappropriate energy consumption. Moreover, G9a promotes the well-paced catabolism of storage glycogen and fat during stress. The importance of energy availability during stress is further evidenced by exogenous glucose rescuing the vulnerability of the G9a mutant to oxidative stress. Prior work in multiple model systems has implicated G9a in several other adaptive responses. Therefore, its role in pacing energy consumption and in restraining excessive stress response gene expression under stress may extend to other adaptive responses across species.


Asunto(s)
Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Epigénesis Genética , Glucosa , Estrés Oxidativo
17.
Acta Neuropathol Commun ; 6(1): 54, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29961428

RESUMEN

Parkinson disease (PD) is the second most common neurodegenerative disorder and the leading neurodegenerative cause of motor disability. Pathologic accumulation of aggregated alpha synuclein (AS) protein in brain, and imbalance in the nigrostriatal system due to the loss of dopaminergic neurons in the substantia nigra- pars compacta, are hallmark features in PD. AS aggregation and propagation are considered to trigger neurotoxic mechanisms in PD, including mitochondrial deficits and oxidative stress. The eukaryotic elongation factor-2 kinase (eEF2K) mediates critical regulation of dendritic mRNA translation and is a crucial molecule in diverse forms of synaptic plasticity. Here we show that eEF2K activity, assessed by immuonohistochemical detection of eEF2 phosphorylation on serine residue 56, is increased in postmortem PD midbrain and hippocampus. Induction of aggressive, AS-related motor phenotypes in a transgenic PD M83 mouse model also increased brain eEF2K expression and activity. In cultures of dopaminergic N2A cells, overexpression of wild-type human AS or the A53T mutant increased eEF2K activity. eEF2K inhibition prevented the cytotoxicity associated with AS overexpression in N2A cells by improving mitochondrial function and reduced oxidative stress. Furthermore, genetic deletion of the eEF2K ortholog efk-1 in C. elegans attenuated human A53T AS induced defects in behavioural assays reliant on dopaminergic neuron function. These data suggest a role for eEF2K activity in AS toxicity, and support eEF2K inhibition as a potential target in reducing AS-induced oxidative stress in PD.


Asunto(s)
Encéfalo/metabolismo , Quinasa del Factor 2 de Elongación/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidad , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Línea Celular Tumoral , Modelos Animales de Enfermedad , Quinasa del Factor 2 de Elongación/genética , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación/genética , Neuroblastoma/patología , Técnicas de Cultivo de Órganos , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Escleroproteínas/toxicidad , alfa-Sinucleína/genética
18.
Aging Cell ; 17(3): e12743, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29508513

RESUMEN

Endogenous and exogenous stresses elicit transcriptional responses that limit damage and promote cell/organismal survival. Like its mammalian counterparts, hepatocyte nuclear factor 4 (HNF4) and peroxisome proliferator-activated receptor α (PPARα), Caenorhabditis elegans NHR-49 is a well-established regulator of lipid metabolism. Here, we reveal that NHR-49 is essential to activate a transcriptional response common to organic peroxide and fasting, which includes the pro-longevity gene fmo-2/flavin-containing monooxygenase. These NHR-49-dependent, stress-responsive genes are also upregulated in long-lived glp-1/notch receptor mutants, with two of them making critical contributions to the oxidative stress resistance of wild-type and long-lived glp-1 mutants worms. Similar to its role in lipid metabolism, NHR-49 requires the mediator subunit mdt-15 to promote stress-induced gene expression. However, NHR-49 acts independently from the transcription factor hlh-30/TFEB that also promotes fmo-2 expression. We show that activation of the p38 MAPK, PMK-1, which is important for adaptation to a variety of stresses, is also important for peroxide-induced expression of a subset of NHR-49-dependent genes that includes fmo-2. However, organic peroxide increases NHR-49 protein levels, by a posttranscriptional mechanism that does not require PMK-1 activation. Together, these findings establish a new role for the HNF4/PPARα-related NHR-49 as a stress-activated regulator of cytoprotective gene expression.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Ayuno/metabolismo , Ácidos Grasos/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Metabolismo de los Lípidos/inmunología , Receptores Citoplasmáticos y Nucleares/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Estrés Oxidativo , Transducción de Señal
19.
Inorg Chem ; 57(2): 718-730, 2018 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-29278329

RESUMEN

The molecular structure of stacked cyclic trinuclear gold(I) complexes [Au3(RN═CR')3]n, with n = 1-4, where R = H, methyl (Me), cyclopentyl (cPe), and phenyl (Ph) and R' = OH and methoxy (OMe) were studied computationally at the second-order Møller-Plesset (MP2) and density functional theory (DFT) levels of theory. At the DFT level, the aurophilic and dispersion interactions were accounted for by using the TPSS functional in combination with the semiempirical D3 correction. The structure optimizations yielded the lowest energy for a slided stacked structure of the [Au3(HN═COH)3]2 dimer, where monomers are slightly shifted relative to one another. At the MP2 level, the slided structure is 32 kJ/mol more stable than the staggered dimer structure, which in turn is energetically 11 kJ/mol below the eclipsed structure. The calculations show that aromatic ligands lead to a planar and prismatic structure of [Au3(PhN═COMe)3]4, whereas for [Au3(cPeN═COMe)3]4, a chair conformation is obtained due to steric effects. Excitation energies were calculated for [Au3(RN═CR')3] and [Au3(RN═CR')3]2 with R = H, Me, and cPe and R' = OH and OMe at the time-dependent DFT level using the optimized molecular structures of the singlet ground state. To simulate the luminescence spectra, the lowest triplet excitation energy was also calculated for the molecular structure of the lowest triplet state. The calculated excitation energies of [Au3(HN═COH)3] and [Au3(HN═COH)3]2 are compared with values obtained at the approximate singles and doubles coupled cluster (CC2) and the second-order algebraic diagrammatic construction (ADC(2)) levels of theory. The calculated absorption and emission energies reproduce the experimental trends, with extremely large Stokes shifts. A solvoluminescence mechanism is also proposed.

20.
Cytogenet Genome Res ; 152(3): 117-121, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28854430

RESUMEN

A 41-year-old Asian woman with bilateral renal angiomyolipomas (AML) was incidentally identified to have a balanced translocation, 46,XX,t(11;12)(p15.4;q15). She had no other features or family history to suggest a diagnosis of tuberous sclerosis. Her healthy daughter had the same translocation and no renal AML at the age of 3 years. Whole-genome sequencing was performed on genomic maternal DNA isolated from blood. A targeted de novo assembly was then conducted with ABySS for chromosomes 11 and 12. Sanger sequencing was used to validate the translocation breakpoints. As a result, genomic characterization of chromosomes 11 and 12 revealed that the 11p breakpoint disrupted the NUP98 gene in intron 1, causing a separation of the promoter and transcription start site from the rest of the gene. The translocation breakpoint on chromosome 12q was located in a gene desert. NUP98 has not yet been associated with renal AML pathogenesis, but somatic NUP98 alterations are recurrently implicated in hematological malignancies, most often following a gene fusion event. We also found evidence for complex structural events involving chromosome 12, which appear to disrupt the TDG gene. We identified a TDGP1 partially processed pseudogene at 12p12.1, which adds complexity to the de novo assembly. In conclusion, this is the first report of a germline constitutional structural chromosome rearrangement disrupting NUP98 that occurred in a generally healthy woman with bilateral renal AML.


Asunto(s)
Angiomiolipoma/genética , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 12/genética , Neoplasias Renales/genética , Proteínas de Complejo Poro Nuclear/genética , Translocación Genética , Adulto , Amniocentesis , Análisis Citogenético/métodos , Femenino , Proteínas Ligadas a GPI/genética , Estudio de Asociación del Genoma Completo , Genómica/métodos , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de Neoplasias/genética , Regiones Promotoras Genéticas , Seudogenes , Sitio de Iniciación de la Transcripción , Esclerosis Tuberosa/diagnóstico , Esclerosis Tuberosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...