Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 15(1): 443, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434644

RESUMEN

BACKGROUND: Bats (Mammalia: Chiroptera) serve as natural reservoirs for many zoonotic pathogens worldwide, including vector-borne pathogens. However, bat-associated parasitic arthropods and their microbiota are thus far not thoroughly described in many regions across the globe, nor is their role in the spillover of pathogens to other vertebrate species well understood. Basic epidemiological research is needed to disentangle the complex ecological interactions among bats, their specific ectoparasites and microorganisms they harbor. Some countries, such as Ukraine, are particularly data-deficient in this respect as the ectoparasitic fauna is poorly documented there and has never been screened for the presence of medically important microorganisms. Therefore, the aims of this study were to provide first data on this topic. METHODS: A total of 239 arthropod specimens were collected from bats. They belonged to several major groups of external parasites, including soft ticks, fleas, and nycteribiid flies from six chiropteran species in Northeastern Ukraine. The ectoparasites were individually screened for the presence of DNA of Rickettsia spp., Anaplasma/Ehrlichia spp., Bartonella spp., Borrelia spp., and Babesia spp. with conventional PCRs. Positive samples were amplified at several loci, sequenced for species identification, and subjected to phylogenetic analysis. RESULTS: Rickettsia DNA was detected exclusively in specimens of the soft tick, Carios vespertilionis (7 out of 43 or 16.3%). Sequencing and phylogenetic analysis revealed high similarity to sequences from Rickettsia parkeri and several other Rickettsia species. Bacteria from the family Anaplasmataceae were detected in all groups of the ectoparasites (51%, 122/239 samples), belonging to the genera Anaplasma, Ehrlichia, and Wolbachia. The detection of Bartonella spp. was successful only in fleas (Nycteridopsylla eusarca) and bat flies (Nycteribia koleantii, N. pedicularia), representing 12.1% (29/239) of the collected ectoparasites. No DNA of Babesia or Borrelia species was identified in the samples. CONCLUSIONS: We report for the first time in Ukraine the molecular detection of several bacterial agents in bat ectoparasites collected from six species of bats. The data presented extend the knowledge on the distribution of ectoparasite species in bats and their involvement in potentially circulating agents pathogenic for humans and vertebrate animals.


Asunto(s)
Argas , Argasidae , Babesia , Bartonella , Borrelia , Infestaciones por Pulgas , Siphonaptera , Animales , Humanos , Filogenia , Ucrania/epidemiología , Argas/genética , Bartonella/genética , Ehrlichia/genética , Anaplasma/genética , Babesia/genética
2.
Parasit Vectors ; 15(1): 65, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193661

RESUMEN

BACKGROUND: Ixodid ticks from the Northern Hemisphere have registered a northward expansion in recent years, and Dermacentor reticulatus is such an example in Europe, its expansion being considered a result of climate change alongside other factors. The aim of this study was to identify the composition of questing tick species and the associated pathogens at different sites near the German Baltic coast. METHODS: Questing ticks were collected monthly at four sites (May-November, 2020), mainly grasslands, and in October and November 2020 at a fifth site. Molecular screening of ticks for pathogens included RT-qPCR for the tick-borne encephalitis virus (TBEV), qPCR for Anaplasma phagocytophilum, PCR for Babesia species and Rickettsia species, and nested PCR for Borrelia species. RESULTS: Altogether 1174 questing ticks were collected: 760 Ixodes ricinus, 326 D. reticulatus and 88 Haemaphysalis concinna. The highest activity peak of I. ricinus and D. reticulatus was in May, in June for H. concinna while a second peak was observed only for I. ricinus and D. reticulatus in September and October, respectively. All samples tested negative for TBEV. For A. phagocytophilum, 1.5% of I. ricinus adults tested positive while the minimum infection rate (MIR) in nymphs was 1.3%. This pathogen was found in 0.6% of D. reticulatus. Babesia spp. were detected in I. ricinus (18.2% adults, 2.1% MIR in nymphs) and H. concinna (13.3% adults, 9.7% MIR in nymphs). Borrelia spp. were present only in I. ricinus (49.1% adults, 11.9% MIR in nymphs), while Rickettsia spp. were detected in I. ricinus (14% adults, 8.9% MIR in nymphs) and D. reticulatus (82%). Co-detection of pathogens was observed in 26.6% and 54.8% of positive I. ricinus adults and nymph pools, respectively, while one D. reticulatus tested positive for A. phagocytophilum and Rickettsia spp. The most common co-infection in I. ricinus adults was Babesia microti and Borrelia afzelii (12.3% of positive ticks). CONCLUSIONS: The results of this study confirm the northern expansion of D. reticulatus and H. concinna in Germany. The detailed data of the infection levels at each location could be useful in assessing the risk of pathogen acquisition following a tick bite.


Asunto(s)
Anaplasma phagocytophilum , Dermacentor , Ixodes , Ixodidae , Rickettsia , Animales , Dermacentor/microbiología , Ixodes/microbiología , Ixodidae/microbiología , Rickettsia/genética
3.
Transbound Emerg Dis ; 69(2): 886-890, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33534959

RESUMEN

The striped field mouse (Apodemus agrarius) is known to carry several zoonotic pathogens, including Leptospira spp. and Dobrava-Belgrade orthohantavirus (DOBV). Since its first detection in 1996 in south-east Austria, the striped field mouse has further expanded its range in Austria. Here, we screened 35 striped field mice collected in an Austrian region near the Hungarian border for DOBV, Leptospira spp. and seven vector-borne pathogens. Hantavirus RT-PCR screening and DOBV IgG ELISA analysis led to the detection of two DOBV-positive striped field mice. The complete coding sequences of all three genome segments of both strains were determined by a combination of target enrichment and next-generation sequencing. Both complete coding S segment sequences clustered within the DOBV genotype Kurkino clade with the highest similarity to a sequence from Hungary. In one of 35 striped field mice, Leptospira borgpetersenii sequence type (ST) 146 was detected. Bartonella spp., Borrelia miyamotoi and Neoehrlichia mikurensis DNA was detected in four, one and two of 32 mice, respectively. Babesia, Anaplasma, Ehrlichia and Rickettsia specific DNA was not detected. Future investigations will have to determine the prevalence and invasion of these pathogens with the ongoing range expansion of the striped field mouse in Austria.


Asunto(s)
Anaplasmataceae , Infecciones por Hantavirus , Orthohantavirus , Enfermedades de los Roedores , Animales , Austria/epidemiología , Orthohantavirus/genética , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/veterinaria , Ratones , Murinae/microbiología , Enfermedades de los Roedores/diagnóstico , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/microbiología
4.
Pathogens ; 10(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34684247

RESUMEN

Knowledge on the occurrence of pathogenic tick-borne bacteria Anaplasma phagocytophilum and Anaplasma ovis is scarce in sheep from Germany. In 2020, owners from five flocks reported ill thrift lambs and ewes with tick infestation. Out of 67 affected sheep, 55 animals were clinically examined and hematological values, blood chemistry and fecal examinations were performed to investigate the underlying disease causes. Serological tests (cELISA, IFAT) and qPCR were applied to all affected sheep to rule out A. phagocytophilum and A. ovis as a differential diagnosis. Ticks were collected from selected pastures and tested by qPCR. Most animals (n = 43) suffered from selenium deficiency and endoparasites were detected in each flock. Anaplasma spp. antibodies were determined in 59% of examined sheep. Seventeen animals tested positive for A. phagocytophilum by qPCR from all flocks and A. phagocytophilum was also detected in eight pools of Ixodes ricinus. Anaplasma phagocytophilum isolates from sheep and ticks were genotyped using three genes (16S rRNA, msp4 and groEL). Anaplasma ovis DNA was identified in six animals from one flock. Clinical, hematological and biochemical changes were not significantly associated with Anaplasma spp. infection. The 16S rRNA analysis revealed known variants of A. phagocytophilum, whereas the msp4 and groEL showed new genotypes. Further investigations are necessary to evaluate the dissemination and health impact of both pathogens in the German sheep population particularly in case of comorbidities.

5.
Ticks Tick Borne Dis ; 12(3): 101676, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33540276

RESUMEN

To address the lack of information on ticks infesting cattle in Egypt and the pathogens that they transmit, the current study aimed to (i) provide insight into tick species found on cattle in Egypt, (ii) identify the pathogens in ticks and their cattle hosts and (iii) detect pathogen associations in ticks and cattle. Tick samples and blood from their bovine hosts were collected from three different areas in Egypt (EL-Faiyum Oasis, Assiut Governorate and EL-Kharga Oasis). Tick species were identified by morphology and by sequence analysis of the cytochrome C oxidase subunit 1 (cox1) gene. Tick pools and blood samples from cattle were screened by the Reverse Line Blot hybridization (RLB) assay for the simultaneous detection of tick-borne pathogens, including Babesia, Theileria, Anaplasma, Ehrlichia, and Rickettsia spp., as well as the tick endosymbiont Midichloria mitochondrii. The RLB results were confirmed with specific conventional and semi-nested PCRs followed by sequencing. In total, 570 ticks (males, females and nymphs) were collected from 41 heads of cattle. Altogether 398 ticks belonged to the genus Hyalomma (397 Hyalomma excavatum and one Hyalomma scupense) while 172 ticks were identified as Rhipicephalus annulatus. Pooled H. excavatum ticks tested positive for several protozoa and bacteria with different minimum infection rates (MIRs): Theileria annulata (18.1 %), Babesia occultans (1.8 %), Anaplasma marginale (28.5 %), Anaplasma platys (0.25 %), Midichloria mitochondrii (11.6 %), Ehrlichia chaffeensis-like (1.8 %) and Ehrlichia minasensis (1 %). In R. annulatus, several agents were identified at different MIRs: T. annulata (2.3 %), B. bovis (0.6 %), A. marginale (18.0 %), A. platys (1.2 %), M. mitochondrii (2.9 %), E. minasensis (0.6 %). Pathogens co-detection in tick pools revealed A. marginale and T. annulata in 13.3 % samples followed by the co-detection of A. marginale and M. mitochondrii (8.4 %). In addition, triple co-detection with A. marginale, T. annulata and M. mitochondrii were found in 5.3 % of the tick pools. In cattle, the most common coinfection was with A. marginale and T. annulata (82.9 %) followed by the coinfection between A. marginale, T. annulata and B. bovis (4.9 %), A. marginale and B. bigemina (2.4 %) and finally the coinfection between T. annulata and B. occultans (2.4 %). Anaplasma platys, Babesia occultans, and E. minasensis were detected for the first time in Egypt in both cattle and ticks. These findings should be taken in consideration regarding human and animal wellbeing by the public health and veterinary authorities in Egypt.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Ixodidae/microbiología , Enfermedades por Picaduras de Garrapatas/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/parasitología , Egipto/epidemiología , Femenino , Ixodidae/clasificación , Ixodidae/crecimiento & desarrollo , Masculino , Ninfa/clasificación , Ninfa/crecimiento & desarrollo , Ninfa/microbiología , Infestaciones por Garrapatas/parasitología , Infestaciones por Garrapatas/veterinaria , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/microbiología
6.
Parasit Vectors ; 13(1): 495, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993778

RESUMEN

BACKGROUND: Anaplasma marginale is an obligate intracellular bacterium and the main cause of bovine anaplasmosis in tropical and subtropical regions. In Egypt, data regarding the prevalence of A. marginale in ruminant hosts and of the circulating genotypes is lacking. This study therefore aimed to (i) investigate the presence, epidemiology and genotypes of A. marginale in cattle and buffaloes in Egypt, (ii) to evaluate suitable diagnostic tools and (iii) to identify co-infections of A. marginale with other selected tick-borne pathogens. METHODS: Blood samples were collected from 394 animals (309 cattle and 85 buffaloes) from three different areas in Egypt. For the detection of A. marginale infection, several tests were compared for their sensitivity and specificity: blood smear analysis, enzyme-linked immunosorbent assay (ELISA), PCR, real-time PCR and reverse line blot (RLB) assay. Co-infections with A. marginale, piroplasms and other Anaplasmataceae were surveyed by RLB while A. marginale genotypes were identified by amplifying and sequencing the partial msp1α gene. RESULTS: Anaplasma marginale DNA was amplified by qPCR in 68.3% of cattle and 29.4% of buffaloes. RLB showed infection with A. marginale in 50.2% of cattle and 42.5% of buffaloes. Blood smear analysis detected this agent in 16.2% of cattle and 2.4% of buffaloes. ELISA showed specific antibodies against A. marginale in 54.9% of cattle. Anaplasma marginale was associated, in cattle and buffaloes, with several tick-borne pathogens (Theileria annulata, Babesia bovis, Babesia bigemina, Babesia occultans and Anaplasma platys). A significant difference of A. marginale infection level was noticed in cattle, where animals between 3-5-years-old had a higher prevalence (79.2%) compared to those older than 5 years (36.4%) and younger than 3 years (59.7%) and one year (64.5%), respectively (P = 0.002281). Microsatellite analysis identified 15 different genotypes. CONCLUSIONS: The epidemiological findings revealed high prevalence of A. marginale in cattle and buffaloes in all the investigated areas. The circulation of diverse genotypes was observed, most of these A. marginale genotypes being specific for Egypt. The qPCR assay was confirmed to be the most sensitive tool for detection of A. marginale in cattle and buffaloes even in the carrier state, highlighting the importance of using suitable diagnostic tests.


Asunto(s)
Anaplasma marginale/genética , Infecciones por Anaplasmataceae/microbiología , Anaplasmataceae/genética , Anaplasmosis/microbiología , Búfalos/microbiología , Enfermedades de los Bovinos/microbiología , Coinfección/microbiología , Anaplasma marginale/clasificación , Anaplasma marginale/aislamiento & purificación , Anaplasma marginale/fisiología , Anaplasmataceae/clasificación , Anaplasmataceae/aislamiento & purificación , Anaplasmataceae/fisiología , Infecciones por Anaplasmataceae/epidemiología , Anaplasmosis/epidemiología , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Egipto/epidemiología , Genotipo , Masculino , Filogenia
7.
Pathogens ; 9(10)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987685

RESUMEN

West Nile virus (WNV) is a mosquito-borne agent that has also been isolated from several tick species. Vector competence of Ixodes ricinus, one of the most common tick species in Europe, has been poorly investigated for WNV to date. As such, to evaluate the vector competence, laboratory reared Ixodes ricinus nymphs were in vitro fed with WNV lineage 1 infectious blood, allowed to molt, and the resulting females artificially fed to study the virus transmission. Furthermore, we studied the kinetics of WNV replication in ticks after infecting nymphs using an automatic injector. Active replication of WNV was detected in injected nymphs from day 7 post-infection until 28 dpi. In the nymphs infected by artificial feeding, the transstadial transmission of WNV was confirmed molecularly in 46.7% of males, while virus transmission during in vitro feeding of I. ricinus females originating from infected nymphs was not registered. The long persistence of WNV in I. ricinus ticks did not correlate with the transmission of the virus and it is unlikely that I. ricinus represents a competent vector. However, there is a potential reservoir role that this tick species can play, with hosts potentially acquiring the viral agent after ingesting the infected ticks.

8.
Parasit Vectors ; 13(1): 428, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32838795

RESUMEN

BACKGROUND: Ticks are hematophagous arthropods responsible for maintenance and transmission of several pathogens of veterinary and medical importance. Current knowledge on species diversity and pathogens transmitted by ticks infesting camels in Nigeria is limited. Therefore, the aim of this study was to unravel the status of ticks and tick-borne pathogens of camels in Nigeria. METHODS: Blood samples (n = 176) and adult ticks (n = 593) were collected from one-humped camels (Camelus dromedarius) of both sexes in three locations (Kano, Jigawa and Sokoto states) in north-western Nigeria and screened for the presence of Rickettsia spp., Babesia spp., Anaplasma marginale, Anaplasma spp. and Coxiella-like organisms using molecular techniques. All ticks were identified to species level using a combination of morphological and molecular methods. RESULTS: Ticks comprised the three genera Hyalomma, Amblyomma and Rhipicephalus. Hyalomma dromedarii was the most frequently detected tick species (n = 465; 78.4%) while Amblyomma variegatum (n = 1; 0.2%) and Rhipicephalus evertsi evertsi (n = 1; 0.2%) were less frequent. Other tick species included H. truncatum (n = 87; 14.7%), H. rufipes (n = 19; 3.2%), H. impeltatum (n = 18; 3.0%) and H. impressum (n = 2; 0.3%). The minimum infection rates of tick-borne pathogens in 231 tick pools included Rickettsia aeschlimannii (n = 51; 8.6%); Babesia species, (n = 4; 0.7%) comprising of B. occultans (n = 2), B. caballi (n = 1) and Babesia sp. (n = 1); Coxiella burnetii (n = 17; 2.9%); and endosymbionts in ticks (n = 62; 10.5%). We detected DNA of "Candidatus Anaplasma camelli" in 40.3% of the blood samples of camels. Other tick-borne pathogens including Anaplasma marginale were not detected. Analysis of risk factors associated with both tick infestation and infection with Anaplasma spp. in the blood indicated that age and body condition scores of the camels were significant (P < 0.05) risk factors while gender was not. CONCLUSIONS: This study reports low to moderate prevalence rates of selected tick-borne pathogens associated with camels and their ticks in north-western Nigeria. The presence of zoonotic R. aeschlimannii emphasizes the need for a concerted tick control programme in Nigeria.


Asunto(s)
Camelus , Ixodidae , Infestaciones por Garrapatas/veterinaria , Anaplasma/aislamiento & purificación , Animales , Babesia/aislamiento & purificación , Camelus/microbiología , Camelus/parasitología , Coxiella/aislamiento & purificación , Humanos , Ixodidae/microbiología , Ixodidae/parasitología , Nigeria/epidemiología , Patología Molecular , Prevalencia , Rickettsia/aislamiento & purificación , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/veterinaria , Zoonosis
9.
Parasit Vectors ; 13(1): 106, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32106890

RESUMEN

BACKGROUND: Ixodes ricinus is the most common tick species in Europe and the main vector for Borrelia burgdorferi (sensu lato) and tick-borne encephalitis virus (TBEV). It is involved also in the transmission of Borrelia miyamotoi, a relapsing fever spirochete that causes health disorders in humans. Little is known regarding the circulation of Borrelia species and the natural foci of TBEV in north-eastern Germany. The goal of this study was to investigate the infection rates of Borrelia spp. and of TBEV in I. ricinus ticks from north-eastern Germany. METHODS: Ticks were collected by flagging from 14 forest sites in Mecklenburg-Western Pomerania between April and October 2018. RNA and DNA extraction was performed from individual adult ticks and from pools of 2-10 nymphs. Real time reverse transcription PCR (RT-qPCR) targeted the 3' non-coding region of TBEV, while DNA of Borrelia spp. was tested by nested PCR for the amplification of 16S-23S intergenic spacer. Multilocus sequence typing (MLST) was performed on B. miyamotoi isolates. RESULTS: In total, 2407 ticks were collected (239 females, 232 males and 1936 nymphs). Female and male I. ricinus ticks had identical infection rates (both 12.1%) for Borrelia spp., while nymphal pools showed a minimum infection rate (MIR) of 3.3%. Sequencing revealed four Borrelia species: B. afzelii, B. garinii, B. valaisiana and B. miyamotoi. Borrelia afzelii had the highest prevalence in adult ticks (5.5%) and nymphs (MIR of 1.8%). Borrelia miyamotoi was identified in 3.0% of adults and registered the MIR of 0.8% in nymphs. Borrelia valaisiana was confirmed in 2.5% adult ticks and nymphs had the MIR of 0.7%, while B. garinii was present in 1.1% of adults and showed a MIR of 0.1% in nymphs. The MLST of B. miyamotoi isolates showed that they belong to sequence type 635. No tick sample was positive after RT-qPCR for TBEV RNA. CONCLUSIONS: The prevalence of B. miyamotoi in I. ricinus ticks registered similar levels to other reports from Europe suggesting that this agent might be well established in the local tick population. The detection of B. burgdorferi (s.l.) indicates a constant circulation in tick populations from this region.


Asunto(s)
Borrelia burgdorferi/genética , Borrelia burgdorferi/aislamiento & purificación , Borrelia/aislamiento & purificación , Garrapatas/microbiología , Garrapatas/virología , Animales , Borrelia/clasificación , Borrelia/genética , Virus de la Encefalitis Transmitidos por Garrapatas , Femenino , Bosques , Alemania , Ixodes/microbiología , Ixodes/virología , Masculino , Tipificación de Secuencias Multilocus , Ninfa/microbiología , Ninfa/virología , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...