Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634802

RESUMEN

The 'structure assessment' web server is a one-stop shop for interactive evaluation and benchmarking of structural models of macromolecular complexes including proteins and nucleic acids. A user-friendly web dashboard links sequence with structure information and results from a variety of state-of-the-art tools, which facilitates the visual exploration and evaluation of structure models. The dashboard integrates stereochemistry information, secondary structure information, global and local model quality assessment of the tertiary structure of comparative protein models, as well as prediction of membrane location. In addition, a benchmarking mode is available where a model can be compared to a reference structure, providing easy access to scores that have been used in recent CASP experiments and CAMEO. The structure assessment web server is available at https://swissmodel.expasy.org/assess.

2.
Bioinformatics ; 40(1)2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38175775

RESUMEN

MOTIVATION: Language models are routinely used for text classification and generative tasks. Recently, the same architectures were applied to protein sequences, unlocking powerful new approaches in the bioinformatics field. Protein language models (pLMs) generate high-dimensional embeddings on a per-residue level and encode a "semantic meaning" of each individual amino acid in the context of the full protein sequence. These representations have been used as a starting point for downstream learning tasks and, more recently, for identifying distant homologous relationships between proteins. RESULTS: In this work, we introduce a new method that generates embedding-based protein sequence alignments (EBA) and show how these capture structural similarities even in the twilight zone, outperforming both classical methods as well as other approaches based on pLMs. The method shows excellent accuracy despite the absence of training and parameter optimization. We demonstrate that the combination of pLMs with alignment methods is a valuable approach for the detection of relationships between proteins in the twilight-zone. AVAILABILITY AND IMPLEMENTATION: The code to run EBA and reproduce the analysis described in this article is available at: https://git.scicore.unibas.ch/schwede/EBA and https://git.scicore.unibas.ch/schwede/eba_benchmark.


Asunto(s)
Aminoácidos , Proteínas , Proteínas/química , Secuencia de Aminoácidos , Alineación de Secuencia , Lenguaje
3.
Proteins ; 91(12): 1850-1860, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37858934

RESUMEN

Predicting model quality is a fundamental component of any modeling procedure, and blind assessment of these methods constitutes a crucial aspect of the Critical Assessment of Protein Structure Prediction (CASP) experiment. Historically, the main focus was on assessing methods that predict global and per-residue accuracies in tertiary structure models. This focus shifted with the community's increased efforts in modeling complexes and assemblies. We asked the community to process the models from the CASP15 assembly category and provide estimates of the accuracy of the predicted quaternary structure, both globally and at the local interface level. Besides identifying remarkable accuracy of modeling groups in assessing their own predictions, we set up a benchmarking pipeline to highlight different aspects of quaternary structure models and introduced a simple consensus EMA method as baseline. While participating methods showed commendable performance, the baseline was difficult to surpass. It is important to point out that prediction performance varies for the individual CASP targets, highlighting potential areas of improvement and challenges ahead.


Asunto(s)
Biología Computacional , Proteínas , Conformación Proteica , Modelos Moleculares , Biología Computacional/métodos , Proteínas/química , Benchmarking
4.
Nature ; 622(7983): 646-653, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704037

RESUMEN

We are now entering a new era in protein sequence and structure annotation, with hundreds of millions of predicted protein structures made available through the AlphaFold database1. These models cover nearly all proteins that are known, including those challenging to annotate for function or putative biological role using standard homology-based approaches. In this study, we examine the extent to which the AlphaFold database has structurally illuminated this 'dark matter' of the natural protein universe at high predicted accuracy. We further describe the protein diversity that these models cover as an annotated interactive sequence similarity network, accessible at https://uniprot3d.org/atlas/AFDB90v4 . By searching for novelties from sequence, structure and semantic perspectives, we uncovered the ß-flower fold, added several protein families to Pfam database2 and experimentally demonstrated that one of these belongs to a new superfamily of translation-targeting toxin-antitoxin systems, TumE-TumA. This work underscores the value of large-scale efforts in identifying, annotating and prioritizing new protein families. By leveraging the recent deep learning revolution in protein bioinformatics, we can now shed light into uncharted areas of the protein universe at an unprecedented scale, paving the way to innovations in life sciences and biotechnology.


Asunto(s)
Bases de Datos de Proteínas , Aprendizaje Profundo , Anotación de Secuencia Molecular , Pliegue de Proteína , Proteínas , Homología Estructural de Proteína , Secuencia de Aminoácidos , Internet , Proteínas/química , Proteínas/clasificación , Proteínas/metabolismo
5.
Proteomics ; 23(17): e2200323, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37365936

RESUMEN

Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy.


Asunto(s)
Proteínas , Reproducibilidad de los Resultados , Proteínas/metabolismo , Unión Proteica
6.
J Mol Biol ; 435(14): 168021, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-36828268

RESUMEN

ModelCIF (github.com/ihmwg/ModelCIF) is a data information framework developed for and by computational structural biologists to enable delivery of Findable, Accessible, Interoperable, and Reusable (FAIR) data to users worldwide. ModelCIF describes the specific set of attributes and metadata associated with macromolecular structures modeled by solely computational methods and provides an extensible data representation for deposition, archiving, and public dissemination of predicted three-dimensional (3D) models of macromolecules. It is an extension of the Protein Data Bank Exchange / macromolecular Crystallographic Information Framework (PDBx/mmCIF), which is the global data standard for representing experimentally-determined 3D structures of macromolecules and associated metadata. The PDBx/mmCIF framework and its extensions (e.g., ModelCIF) are managed by the Worldwide Protein Data Bank partnership (wwPDB, wwpdb.org) in collaboration with relevant community stakeholders such as the wwPDB ModelCIF Working Group (wwpdb.org/task/modelcif). This semantically rich and extensible data framework for representing computed structure models (CSMs) accelerates the pace of scientific discovery. Herein, we describe the architecture, contents, and governance of ModelCIF, and tools and processes for maintaining and extending the data standard. Community tools and software libraries that support ModelCIF are also described.


Asunto(s)
Bases de Datos de Proteínas , Sustancias Macromoleculares/química , Conformación Proteica , Programas Informáticos
7.
Gigascience ; 112022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36448847

RESUMEN

While scientists can often infer the biological function of proteins from their 3-dimensional quaternary structures, the gap between the number of known protein sequences and their experimentally determined structures keeps increasing. A potential solution to this problem is presented by ever more sophisticated computational protein modeling approaches. While often powerful on their own, most methods have strengths and weaknesses. Therefore, it benefits researchers to examine models from various model providers and perform comparative analysis to identify what models can best address their specific use cases. To make data from a large array of model providers more easily accessible to the broader scientific community, we established 3D-Beacons, a collaborative initiative to create a federated network with unified data access mechanisms. The 3D-Beacons Network allows researchers to collate coordinate files and metadata for experimentally determined and theoretical protein models from state-of-the-art and specialist model providers and also from the Protein Data Bank.


Asunto(s)
Metadatos , Registros , Secuencia de Aminoácidos , Bases de Datos de Proteínas , Simulación por Computador
8.
Proteins ; 89(12): 1977-1986, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34387007

RESUMEN

The Continuous Automated Model EvaluatiOn (CAMEO) platform complements the biennial CASP experiment by conducting fully automated blind evaluations of three-dimensional protein prediction servers based on the weekly prerelease of sequences of those structures, which are going to be published in the upcoming release of the Protein Data Bank. While in CASP14, significant success was observed in predicting the structures of individual protein chains with high accuracy, significant challenges remain in correctly predicting the structures of complexes. By implementing fully automated evaluation of predictions for protein-protein complexes, as well as for proteins in complex with ligands, peptides, nucleic acids, or proteins containing noncanonical amino acid residues, CAMEO will assist new developments in those challenging areas of active research.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Conformación Proteica , Análisis de Secuencia de Proteína , Programas Informáticos , Benchmarking , Análisis por Conglomerados , Modelos Moleculares , Proteínas/química , Proteínas/genética
9.
Microorganisms ; 9(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069681

RESUMEN

A variety of antiviral treatments for COVID-19 have been investigated, involving many repurposed drugs. Currently, the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp, encoded by nsp12-nsp7-nsp8) has been targeted by numerous inhibitors, e.g., remdesivir, the only provisionally approved treatment to-date, although the clinical impact of these interventions remains inconclusive. However, the potential emergence of antiviral resistance poses a threat to the efficacy of any successful therapies on a wide scale. Here, we propose a framework to monitor the emergence of antiviral resistance, and as a proof of concept, we address the interaction between RdRp and remdesivir. We show that SARS-CoV-2 RdRp is under purifying selection, that potential escape mutations are rare in circulating lineages, and that those mutations, where present, do not destabilise RdRp. In more than 56,000 viral genomes from 105 countries from the first pandemic wave, we found negative selective pressure affecting nsp12 (Tajima's D = -2.62), with potential antiviral escape mutations in only 0.3% of sequenced genomes. Potential escape mutations included known key residues, such as Nsp12:Val473 and Nsp12:Arg555. Of the potential escape mutations involved globally, in silico structural models found that they were unlikely to be associated with loss of stability in RdRp. No potential escape mutation was found in a local cohort of remdesivir treated patients. Collectively, these findings indicate that RdRp is a suitable drug target, and that remdesivir does not seem to exert high selective pressure. We anticipate our framework to be the starting point of a larger effort for a global monitoring of drug resistance throughout the COVID-19 pandemic.

10.
PLoS Comput Biol ; 17(1): e1008667, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507980

RESUMEN

Computational methods for protein structure modelling are routinely used to complement experimental structure determination, thus they help to address a broad spectrum of scientific questions in biomedical research. The most accurate methods today are based on homology modelling, i.e. detecting a homologue to the desired target sequence that can be used as a template for modelling. Here we present a versatile open source homology modelling toolbox as foundation for flexible and computationally efficient modelling workflows. ProMod3 is a fully scriptable software platform that can perform all steps required to generate a protein model by homology. Its modular design aims at fast prototyping of novel algorithms and implementing flexible modelling pipelines. Common modelling tasks, such as loop modelling, sidechain modelling or generating a full protein model by homology, are provided as production ready pipelines, forming the starting point for own developments and enhancements. ProMod3 is the central software component of the widely used SWISS-MODEL web-server.


Asunto(s)
Biología Computacional/métodos , Modelos Moleculares , Proteínas/química , Programas Informáticos , Homología Estructural de Proteína , Algoritmos , Bases de Datos de Proteínas , Internet , Conformación Proteica
11.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708196

RESUMEN

(1) Background: Virtual screening studies on the therapeutically relevant proteins of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) require a detailed characterization of their druggable binding sites, and, more generally, a convenient pocket mapping represents a key step for structure-based in silico studies; (2) Methods: Along with a careful literature search on SARS-CoV-2 protein targets, the study presents a novel strategy for pocket mapping based on the combination of pocket (as performed by the well-known FPocket tool) and docking searches (as performed by PLANTS or AutoDock/Vina engines); such an approach is implemented by the Pockets 2.0 plug-in for the VEGA ZZ suite of programs; (3) Results: The literature analysis allowed the identification of 16 promising binding cavities within the SARS-CoV-2 proteins and the here proposed approach was able to recognize them showing performances clearly better than those reached by the sole pocket detection; and (4) Conclusions: Even though the presented strategy should require more extended validations, this proved successful in precisely characterizing a set of SARS-CoV-2 druggable binding pockets including both orthosteric and allosteric sites, which are clearly amenable for virtual screening campaigns and drug repurposing studies. All results generated by the study and the Pockets 2.0 plug-in are available for download.


Asunto(s)
Antivirales/química , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Proteínas Virales/química , Sitios de Unión/efectos de los fármacos , COVID-19 , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Unión Proteica/efectos de los fármacos , Conformación Proteica , SARS-CoV-2
12.
Proteins ; 87(12): 1378-1387, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31571280

RESUMEN

Critical blind assessment of structure prediction techniques is crucial for the scientific community to establish the state of the art, identify bottlenecks, and guide future developments. In Critical Assessment of Techniques in Structure Prediction (CASP), human experts assess the performance of participating methods in relation to the difficulty of the prediction task in a biennial experiment on approximately 100 targets. Yet, the development of automated computational modeling methods requires more frequent evaluation cycles and larger sets of data. The "Continuous Automated Model EvaluatiOn (CAMEO)" platform complements CASP by conducting fully automated blind prediction evaluations based on the weekly pre-release of sequences of those structures, which are going to be published in the next release of the Protein Data Bank (PDB). Each week, CAMEO publishes benchmarking results for predictions corresponding to a set of about 20 targets collected during a 4-day prediction window. CAMEO benchmarking data are generated consistently for all methods at the same point in time, enabling developers to cross-validate their method's performance, and referring to their results in publications. Many successful participants of CASP have used CAMEO-either by directly benchmarking their methods within the system or by comparing their own performance to CAMEO reference data. CAMEO offers a variety of scores reflecting different aspects of structure modeling, for example, binding site accuracy, homo-oligomer interface quality, or accuracy of local model confidence estimates. By introducing the "bestSingleTemplate" method based on structure superpositions as a reference for the accuracy of 3D modeling predictions, CAMEO facilitates objective comparison of techniques and fosters the development of advanced methods.


Asunto(s)
Biología Computacional , Conformación Proteica , Proteínas/ultraestructura , Programas Informáticos , Algoritmos , Benchmarking , Sitios de Unión , Bases de Datos de Proteínas , Humanos , Modelos Moleculares , Pliegue de Proteína , Proteínas/química , Proteínas/genética , Análisis de Secuencia de Proteína
13.
Methods Mol Biol ; 1851: 301-316, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30298405

RESUMEN

Proteins are subject to evolutionary forces that shape their three-dimensional structure to meet specific functional demands. The knowledge of the structure of a protein is therefore instrumental to gain information about the molecular basis of its function. However, experimental structure determination is inherently time consuming and expensive, making it impossible to follow the explosion of sequence data deriving from genome-scale projects. As a consequence, computational structural modeling techniques have received much attention and established themselves as a valuable complement to experimental structural biology efforts. Among these, comparative modeling remains the method of choice to model the three-dimensional structure of a protein when homology to a protein of known structure can be detected.The general strategy consists of using experimentally determined structures of proteins as templates for the generation of three-dimensional models of related family members (targets) of which the structure is unknown. This chapter provides a description of the individual steps needed to obtain a comparative model using SWISS-MODEL, one of the most widely used automated servers for protein structure homology modeling.


Asunto(s)
Proteínas/química , Biología Computacional , Modelos Moleculares , Proteínas/clasificación , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína
14.
Nucleic Acids Res ; 46(W1): W296-W303, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29788355

RESUMEN

Homology modelling has matured into an important technique in structural biology, significantly contributing to narrowing the gap between known protein sequences and experimentally determined structures. Fully automated workflows and servers simplify and streamline the homology modelling process, also allowing users without a specific computational expertise to generate reliable protein models and have easy access to modelling results, their visualization and interpretation. Here, we present an update to the SWISS-MODEL server, which pioneered the field of automated modelling 25 years ago and been continuously further developed. Recently, its functionality has been extended to the modelling of homo- and heteromeric complexes. Starting from the amino acid sequences of the interacting proteins, both the stoichiometry and the overall structure of the complex are inferred by homology modelling. Other major improvements include the implementation of a new modelling engine, ProMod3 and the introduction a new local model quality estimation method, QMEANDisCo. SWISS-MODEL is freely available at https://swissmodel.expasy.org.


Asunto(s)
Internet , Conformación Proteica , Proteínas/genética , Programas Informáticos , Bases de Datos de Proteínas , Modelos Químicos , Simulación de Dinámica Molecular , Proteínas/química , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína
15.
Nucleic Acids Res ; 45(D1): D313-D319, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899672

RESUMEN

SWISS-MODEL Repository (SMR) is a database of annotated 3D protein structure models generated by the automated SWISS-MODEL homology modeling pipeline. It currently holds >400 000 high quality models covering almost 20% of Swiss-Prot/UniProtKB entries. In this manuscript, we provide an update of features and functionalities which have been implemented recently. We address improvements in target coverage, model quality estimates, functional annotations and improved in-page visualization. We also introduce a new update concept which includes regular updates of an expanded set of core organism models and UniProtKB-based targets, complemented by user-driven on-demand update of individual models. With the new release of the modeling pipeline, SMR has implemented a REST-API and adopted an open licencing model for accessing model coordinates, thus enabling bulk download for groups of targets fostering re-use of models in other contexts. SMR can be accessed at https://swissmodel.expasy.org/repository.


Asunto(s)
Bases de Datos de Proteínas , Modelos Moleculares , Conformación Proteica , Proteínas/química , Humanos , Proteoma , Proteómica/métodos , Programas Informáticos , Relación Estructura-Actividad , Navegador Web
16.
J Chem Phys ; 145(24): 244112, 2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-28049338

RESUMEN

We propose a hierarchical Bayesian framework to systematically integrate heterogeneous data for the calibration of force fields in Molecular Dynamics (MD) simulations. Our approach enables the fusion of diverse experimental data sets of the physico-chemical properties of a system at different thermodynamic conditions. We demonstrate the value of this framework for the robust calibration of MD force-fields for water using experimental data of its diffusivity, radial distribution function, and density. In order to address the high computational cost associated with the hierarchical Bayesian models, we develop a novel surrogate model based on the empirical interpolation method. Further computational savings are achieved by implementing a highly parallel transitional Markov chain Monte Carlo technique. The present method bypasses possible subjective weightings of the experimental data in identifying MD force-field parameters.

17.
Plant Physiol ; 169(4): 2342-58, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26432876

RESUMEN

Growth of tissues is highly reproducible; yet, growth of individual cells in a tissue is highly variable, and neighboring cells can grow at different rates. We analyzed the growth of epidermal cell lineages in the Arabidopsis (Arabidopsis thaliana) sepal to determine how the growth curves of individual cell lineages relate to one another in a developing tissue. To identify underlying growth trends, we developed a continuous displacement field to predict spatially averaged growth rates. We showed that this displacement field accurately describes the growth of sepal cell lineages and reveals underlying trends within the variability of in vivo cellular growth. We found that the tissue, individual cell lineages, and cell walls all exhibit growth rates that are initially low, accelerate to a maximum, and decrease again. Accordingly, these growth curves can be represented by sigmoid functions. We examined the relationships among the cell lineage growth curves and surprisingly found that all lineages reach the same maximum growth rate relative to their size. However, the cell lineages are not synchronized; each cell lineage reaches this same maximum relative growth rate but at different times. The heterogeneity in observed growth results from shifting the same underlying sigmoid curve in time and scaling by size. Thus, despite the variability in growth observed in our study and others, individual cell lineages in the developing sepal follow similarly shaped growth curves.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Linaje de la Célula , Flores/crecimiento & desarrollo , Arabidopsis/citología , Arabidopsis/genética , División Celular , Pared Celular/metabolismo , Flores/citología , Flores/genética , Modelos Biológicos , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo
18.
Elife ; 4: 05864, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25946108

RESUMEN

Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX ( www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The software's modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth.


Asunto(s)
Algoritmos , Arabidopsis/ultraestructura , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Programas Informáticos , Animales , Anisotropía , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Cassia/genética , Cassia/crecimiento & desarrollo , Cassia/ultraestructura , Proliferación Celular , Forma de la Célula , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/ultraestructura , Flores/genética , Flores/crecimiento & desarrollo , Flores/ultraestructura , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/ultraestructura , Expresión Génica , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/estadística & datos numéricos , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/ultraestructura , Microscopía Confocal , Microtúbulos/genética , Microtúbulos/ultraestructura , Morfogénesis/genética , Desarrollo de la Planta/genética , Imagen de Lapso de Tiempo/instrumentación , Imagen de Lapso de Tiempo/métodos , Imagen de Lapso de Tiempo/estadística & datos numéricos
19.
Dev Cell ; 20(1): 123-30, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21238930

RESUMEN

We use the Dpp morphogen gradient in the Drosophila wing disc as a model to address the fundamental question of how a gradient of a growth factor can produce uniform growth. We first show that proper expression and subcellular localization of components in the Fat tumor-suppressor pathway, which have been argued to depend on Dpp activity differences, are not reliant on the Dpp gradient. We next analyzed cell proliferation in discs with uniformly high Dpp or uniformly low Fat signaling activity and found that these pathways regulate growth in a complementary manner. While the Dpp mediator Brinker inhibits growth in the primordium primarily in the lateral regions, Fat represses growth mostly in the medial region. Together, our results indicate that the activities of both signaling pathways are regulated in a parallel rather than sequential manner and that uniform proliferation is achieved by their complementary action on growth.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Animales , Tipificación del Cuerpo/genética , Polaridad Celular , Proliferación Celular , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Transducción de Señal , Alas de Animales/citología , Alas de Animales/embriología , Alas de Animales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...