Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 25(29): 28760-28771, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29484623

RESUMEN

Indoor air pollution assessment in work environments remains challenging due to a combination of logistic reasons and availability of costly instrumentation for data acquisition and post-processing. Existing literature focuses on energy production environments, hospitals, and less so on food production spaces. Studies on indoor air quality in bakeries are scarce or even absent. Motivated by this, the present study investigates indoor air quality in a bakery located in Bari province in South Italy, using a combination of approaches including analytical chemistry analyses and computational fluid dynamics to reconstruct the air ventilation in response to air temperature gradients within the working environment. PM2.5 indoor samplings were collected every 6 h from 7 to 19 April 2013 in the proximity of two bakery ovens powered by gas and wood, respectively. For each sampling day, 4 PM2.5 samples were collected: from 3:00 to 9:00 h (first), from 9:00 to 13:30 h (second), from 14:00 to 21:00 h (third), and from 21:00 to 3:00 h (fourth). In total, 40 samples were collected. On each sample, several polycyclic aromatic hydrocarbons (PAHs) were determined such as benzo[a]anthracene (228), benzo[b]fluoranthene (252), benzo[k]fluoranthene (252), benzo[a]pyrene (252), benzo[g,h,i]perylene (276), indeno[1,2,3-cd]pyrene (276), and dibenzo[a,h]anthracene (278), the main compounds of 16 priority US Environmental Protection Agency (US-EPA) PAHs in particulate phase. The PAH mean concentrations showed higher values during the first (from 3:00 to 9:00 h) and fourth (from 21:00 to 3:00 h) sampling intervals than the other two with benzo[a]pyrene mean values exceeding the Italian law limit of 1 ng/m3. Taking into account benzo[a]pyrene mean concentration for the first interval and the first plus the second one, which are the hours with the largest working activity, we have estimated that the baker and co-workers are exposed to a cancer risk of 4.3 × 10-7 and 5.8 × 10-7, respectively (these values are lower than US-EPA recommended guideline of 10-6). Our study was complemented by numerical analyses using state-of-the-art computational fluid dynamics to reconstruct at high resolution air movement from the various working places, i.e., the bakery and the selling area which were connected via a door. The numerical simulations were possible given that surface temperature using infrared thermography as well as air temperature was continuously recorded throughout the sampling acquisition. The use of this approach allowed us to estimate the transport and diffusion of benzo[a]pyrene from one area to the other thus complementing the point sampling information. Computational fluid dynamic simulation results confirm the presence of benzo[a]pyrene in the laboratory as obtained from the measurements and suggests its presence in the sales' area of the bakery with concentrations similar those found in the laboratory.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Industria de Alimentos , Hidrocarburos Policíclicos Aromáticos/análisis , Movimientos del Aire , Humanos , Italia , Medición de Riesgo , Estados Unidos , United States Environmental Protection Agency , Lugar de Trabajo/normas
2.
Toxins (Basel) ; 8(8)2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27509524

RESUMEN

Wine and fermenting musts are grape products widely consumed worldwide. Since the presence of mycotoxin-producing fungi may greatly compromise their quality characteristics and safety, there is an increasing need for relatively rapid "user friendly" quantitative assays to detect fungal contamination both in grapes delivered to wineries and in final products. Although other fungi are most frequently involved in grape deterioration, secondary infections by Penicillium spp. are quite common, especially in cool areas with high humidity and in wines obtained by partially dried grapes. In this work, a single-tube nested real-time PCR approach-successfully applied to hazelnut and peanut allergen detection-was tested for the first time to trace Penicillium spp. in musts and wines. The method consisted of two sets of primers specifically designed to target the ß-tubulin gene, to be simultaneously applied with the aim of lowering the detection limit of conventional real-time PCR. The assay was able to detect up to 1 fg of Penicillium DNA. As confirmation, patulin content of representative samples was determined. Most of analyzed wines/musts returned contaminated results at >50 ppb and a 76% accordance with molecular assay was observed. Although further large-scale trials are needed, these results encourage the use of the newly developed method in the pre-screening of fresh and processed grapes for the presence of Penicillium DNA before the evaluation of related toxins.


Asunto(s)
Técnicas Bacteriológicas , ADN Bacteriano/genética , Fermentación , Microbiología de Alimentos , Micotoxinas/genética , Penicillium/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Vitis/microbiología , Vino/microbiología , ADN Bacteriano/aislamiento & purificación , Micotoxinas/clasificación , Micotoxinas/aislamiento & purificación , Penicillium/clasificación , Penicillium/aislamiento & purificación , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA