Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 406: 134866, 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-36462359

RESUMEN

Extended, chemically detailed kinetic models at the molecular basis are constructed to identify the reactions involved in the reversal of the antioxidant action of α-, ß-, γ- and δ-tocopherols during methyl linoleate oxidation. The reaction mechanisms were numerically simulated and subjected to analysis to quantify the significance of individual chemical steps by the value-based method. Results of the obtained kinetic models agreed well with the experimental data. The significant individual reactions contributing to the observed antioxidant and pro-oxidant behavior of the different tocopherols were identified. It is revealed that the reverse order of antioxidant potency and a complex nonlinear dependency of the antioxidant potency of tocopherols with the increase in their concentration are due to the increasing contribution of pro-oxidant relative to the antioxidant reactions. Once the approach presented here can be applied to more complex systems, engineered optimization of antioxidant protection strategies may be reached.


Asunto(s)
Antioxidantes , Tocoferoles , Antioxidantes/química , Especies Reactivas de Oxígeno , Tocoferoles/análisis
2.
Antioxidants (Basel) ; 6(2)2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-28338603

RESUMEN

The oxygen radical absorbance capacity (ORAC) method was used to detect the antiperoxyradical ability of organoselenium compounds: selenophene and its derivative, 2-amino-4,5,6,7-tetrahydro-1-selenophene-3-carbonitrile (ATSe); while as a comparison, the sulfur-containing analogue of selenophene-thiophene and its derivative-2-amino-4,5,6,7-tetrahydro-1-thiophene-3-carbonitrile (ATS)-was selected. Cyclic voltammetry (CV), differential pulse voltammetry (DPV) and squarewave voltammetry (SWV) methods were used to determine the redox characteristics of organoselenium and organosulfur compounds. The antiradical activity and capacity of the studied compounds were also measured by using stable radical 2,2'-diphenyl-1-picrylhydrazyl (DPPH). Detected anodic peaks of the oxidation of selenophene, thiophene and their derivatives in CV, DPV and SWV in the interval of -1200 ÷ (+1600) mV potentials in regard to the Ag/Ag⁺ medium of acetonitrile prove the presence of antiperoxyradical activity in regard to oxidizers, i.e., peroxyradicals. The chemical mechanism of the antiperoxyradical ability of selenophene, thiophene and their organic derivatives is proposed.

3.
Chem Phys Lipids ; 147(1): 30-45, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17445788

RESUMEN

A kinetic model was constructed to describe the reactions involved in the oxidation of methyl linoleate (ML) inhibited by alpha-tocopherol (TH). The initial model of the reaction mechanism included 53 individual steps, which were numerically analyzed by the value method based on Hamiltonian systematization of kinetic equations. Good accord was obtained with experimental data at 40 and 50 degrees C. The dominant steps responsible for the antioxidant and pro-oxidant properties of TH in the process of ML peroxidation were revealed. Tocopherol-mediated peroxidation (TMP) and generation of alkoxyl radicals as a result of the reduction of hydroperoxides by TH or the decomposition tocopherol alkyl peroxides are the dominant reactions responsible for the pro-oxidant activities of alpha-tocopherol. The extreme behavior of reaction induction period in relation to TH initial concentration is related to the increase in the ratios of [tocopheroxyl radical]/[peroxyl radical] and the TMP rate/rate of termination by combination of tocopheroxyl and peroxyl radicals.


Asunto(s)
Ácidos Linoleicos/química , Peroxidación de Lípido , alfa-Tocoferol/química , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA