Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft comput ; : 1-32, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37362282

RESUMEN

The supplier selection problem is one of the most important issues in supply chain management. So, many papers have investigated the mentioned problem. However, the related literature shows that researchers had less attention to the sustainability and resilience aspects based on the customer preferences in supplier selection problem. To cover this gap, this research tries to investigate the customer-based sustainable-resilient supplier selection problem. In this way, a Markovian-based fuzzy decision-making method is proposed. At the outset, the customer preferences are evaluated using a combination of the quality function deployment and the Markov transition matrix. Then, by combining the transition matrix and the fuzzy best-worst method, the weights of the indicators are calculated. Finally, the decision matrix is formed and the performance of suppliers is measured based on the multiplication of the decision matrix and vector of sub-criteria weights. Regarding the recent pandemic disruption (COVID-19), the importance of online marketplaces is highlighted more than the past. Hence, this study considers an online marketplace as a case study. Results show that in a pandemic situation, the preferences of customers when they cannot go shopping normally will change after a while. Based on the Markov steady state, these changes are from the priority of price, availability, and performance in initial time to serviceability, reliability, and availability in the future. Finally, based on the FBWM results, from the customer point of view, the top five sub-criteria for sustainable-resilient supplier selection include cost, quality, delivery, responsiveness, and service. So, based on these priorities, the case study potential suppliers are prioritized, respectively.

2.
Soft comput ; 27(6): 2827-2852, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36373094

RESUMEN

Since the COVID-19 outbreak has led to drastic changes in the business environment, researchers attempt to introduce new approaches to improve the capability and flexibility of the industries. In this regard, recently, the concept of the viable supply chain, which tried to incorporate the leagile, resiliency, sustainability, and digitalization aspects into the post-pandemic supply chain, has been introduced by researchers. However, the literature shows that there is lack of study that investigated the viable supplier selection problem, as one of the crucial branches of viable supply chain management. Therefore, to cover this gap, the current work aims to develop a decision-making framework to investigated the viable supplier selection problem. In this regard, owing to the crucial role of the oxygen concentrator device during the COVID-19 outbreak, this research selects the mentioned product as a case study. After determining the indicators and alternatives of the research problem, a novel method named goal programming-based fuzzy best-worst method (GP-FBWM) is proposed to compute the indicators' weights. Then, the potential alternatives are prioritized employing the Fuzzy Vlse Kriterijumsk Optimizacija Kompromisno Resenje method. In general, the main contributions and novelties of the present research are to incorporate the elements of the viability concepts in the supplier selection problem for the medical devices industry and to develop an efficient method GP-FBWM to measure the importance of the criteria. Then, the developed method is implemented and the obtained results are analyzed. Finally, managerial and theoretical implications are provided. Supplementary Information: The online version contains supplementary material available at 10.1007/s00500-022-07572-0.

3.
Med Biol Eng Comput ; 60(4): 969-990, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35152366

RESUMEN

COVID-19 looks to be the worst pandemic disease in the last decades due to its number of infected people, deaths, and the staggering demand for healthcare services, especially hospitals. The first and most important step is to identify the patient flow through a certain process. For the second step, there is a crucial need for predicting the future patient arrivals for planning especially at the administrative level of a hospital. This study aims to first simulate the patient flow process and then predict the future entry of patients in a hospital as the case study. Also, according to the system status, this study suggests some policies based on different probable scenarios and assesses the outcome of each decision to improve the policies. The simulation model is conducted by Arena.15 software. The seasonal auto-regressive integrated moving average (SARIMA) model is used for patient's arrival prediction within 30 days. Different scenarios are evaluated through a data envelopment analysis (DEA) method. The simulation model runs for predicted patient's arrival for the least efficient scenario and the outputs compare the base run scenario. Results show that the system collapses after 14 days according to the predictions and simulation and the bottleneck of the ICU and CCU departments becomes problematic. Hospitals can use simulation and also prediction tools to avoid the crisis to plan for the future in the pandemic.


Asunto(s)
COVID-19 , Simulación por Computador , Predicción , Humanos , Pandemias , Factores de Tiempo
4.
J Vector Borne Dis ; 57(2): 121-127, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34290156

RESUMEN

BACKGROUND & OBJECTIVES: Cutaneous leishmaniasis (CL) is still a public health threat in many rural areas of Iran. It causes considerable morbidity among a huge number of people in the endemic areas. Khuzestan is considered as a CL focus in Iran and recently several cases have been reported from Shush County. The aim of the current study was to determine different aspects of CL epidemiology in this County. METHODS: The study was conducted in four villages in the rural district of Shush County. In order to survey the scar and acute rate of the disease, 100 inhabitants were questioned in each village. In addition, to determine the reservoir host and vector of the disease, rodents were captured using Sherman traps, and sandflies were collected from around the rodent burrows using sticky paper traps. RESULTS: The scar and acute lesion rates were reported as 5.26 and 0.57% among inhabitants, respectively. Fifty-four rodents including Tatera indica (55.5%), Nesokia indica (33.3%), Mus musculus (9.3%) and Rattus norvegicus (1.9%) were captured and identified. Nested PCR showed 3 out of 54 rodents infected with Leishmania major. In total, 1122 sandflies were collected, and Leishmania major detected in Phlebotomus papatasi (4.35%), Sergentomyia dentata (23%), and Sergentomyia clydei (10%). INTERPRETATION & CONCLUSION: Zoonotic cutaneous leishmaniasis due to L. major prevailed in this area. The common and the main vector was Ph. papatasi and, T. indica seems to be the main while N. indica as a secondary reservoir host of the disease in this area.


Asunto(s)
Insectos Vectores/parasitología , Leishmania major/aislamiento & purificación , Leishmaniasis Cutánea/epidemiología , Psychodidae/parasitología , Animales , Reservorios de Enfermedades/parasitología , Femenino , Humanos , Irán/epidemiología , Leishmania major/genética , Leishmaniasis Cutánea/parasitología , Masculino , Ratones , Muridae , Phlebotomus/parasitología , Salud Pública , Ratas , Zoonosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...