Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(22)2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33203072

RESUMEN

This paper is concerned with path-tracking control of a wheeled mobile robot. This robot is equipped with two permanent magnet brushed DC-motors which are fed by two inverter-DC/DC Buck power converter systems as power amplifiers. By taking into account the dynamics of all the subsystems we present, for the first time, a formal stability proof for this control problem. Our control scheme is simple, in the sense that it is composed by four internal classical proportional-integral loops and one external classical proportional-derivative loop for path-tracking purposes. This is the third paper of a series of papers devoted to control different nonlinear systems, which proves that the proposed methodology is a rather general approach for controlling electromechanical systems when actuated by power electronic converters.

2.
Sensors (Basel) ; 20(17)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887264

RESUMEN

In order to solve the trajectory tracking task in a wheeled mobile robot (WMR), a dynamic three-level controller is presented in this paper. The controller considers the mechanical structure, actuators, and power stage subsystems. Such a controller is designed as follows: At the high level is a dynamic control for the WMR (differential drive type). At the medium level is a PI current control for the actuators (DC motors). Lastly, at the low level is a differential flatness-based control for the power stage (DC/DC Buck power converters). The feasibility, robustness, and performance in closed-loop of the proposed controller are validated on a DDWMR prototype through Matlab-Simulink, the real-time interface ControlDesk, and a DS1104 board. The obtained results are experimentally assessed with a hierarchical tracking controller, recently reported in literature, that was also designed on the basis of the mechanical structure, actuators, and power stage subsystems. Although both controllers are robust when parametric disturbances are taken into account, the dynamic three-level tracking controller presented in this paper is better than the hierarchical tracking controller reported in literature.

3.
Sensors (Basel) ; 18(12)2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30544520

RESUMEN

By using the hierarchical controller approach, a new solution for the control problem related to trajectory tracking in a differential drive wheeled mobile robot (DDWMR) is presented in this paper. For this aim, the dynamics of the three subsystems composing a DDWMR, i.e., the mechanical structure (differential drive type), the actuators (DC motors), and the power stage (DC/DC Buck power converters), are taken into account. The proposed hierarchical switched controller has three levels: the high level corresponds to a kinematic control for the mechanical structure; the medium level includes two controls based on differential flatness for the actuators; and the low level is linked to two cascade switched controls based on sliding modes and PI control for the power stage. The hierarchical switched controller was experimentally implemented on a DDWMR prototype via MATLAB-Simulink along with a DS1104 board. With the intention of assessing the performance of the switched controller, experimental results associated with a hierarchical average controller recently reported in literature are also presented here. The experimental results show the robustness of both controllers when parametric uncertainties are applied. However, the performance achieved with the switched controller introduced in the present paper is better than, or at least similar to, performance achieved with the average controller reported in literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...