Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 951: 175416, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142411

RESUMEN

Many studies have drawn attention to the associations of oxygenated polycyclic aromatic hydrocarbons (OPAHs) with harmful health effects, advocating for their systematic monitoring alongside simple PAHs to better understand the aerosol carcinogenic potential in urban areas. To address this need, this study conducted an extensive PM2.5 sampling campaign in Athens, Greece, at the Thissio Supersite of the National Observatory of Athens, from December 2018 to July 2021, aiming to characterize the levels and variability of polycyclic aromatic compounds (PACs), perform source apportionment, and assess health risk. Cumulative OPAH concentrations (Σ-OPAHs) were in the same range as Σ-PAHs (annual average 4.2 and 5.6 ng m-3, respectively). They exhibited a common seasonal profile with enhanced levels during the heating seasons, primarily attributed to residential wood burning (RWB). The episodic impact of biomass burning was also observed during a peri-urban wildfire event in May 2021, when PAH and OPAH concentrations increased by a factor of three compared to the monthly average. The study period also included the winter 2020-2021 COVID-19 lockdown, during which PAH and OPAH levels decreased by >50 % compared to past winters. Positive matrix factorization (PMF) source apportionment, based on a carbonaceous aerosol speciation dataset, identified PAC sources related to RWB, local traffic (gasoline vehicles) and urban traffic (including diesel emissions), as well as an impact of regional organic aerosol. Despite its seasonal character, RWB accounted for nearly half of Σ-PAH and over two-thirds of Σ-OPAH concentrations. Using the estimated source profiles and contributions, the source-specific carcinogenic potency of the studied PACs was calculated, revealing that almost 50 % was related to RWB. These findings underscore the urgent need to regulate domestic biomass burning at a European level, which can provide concrete benefits for improving urban air quality, towards the new stricter EU standards, and reducing long-term health effects.


Asunto(s)
Contaminantes Atmosféricos , Ciudades , Monitoreo del Ambiente , Material Particulado , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/análisis , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Grecia , Medición de Riesgo , Humanos , Contaminación del Aire/estadística & datos numéricos
2.
Toxics ; 12(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38668516

RESUMEN

To study the spatiotemporal variability of particle-bound polycyclic aromatic hydrocarbons (PAHs) and assess their carcinogenic potential in six contrasting urban environments in Greece, a total of 305 filter samples were collected and analyzed. Sampling sites included a variety of urban background, traffic (Athens, Ioannina and Heraklion), rural (Xanthi) and near-port locations (Piraeus and Volos). When considering the sum of 16 U.S. EPA priority PAHs, as well as that of the six EU-proposed members, average concentrations observed across locations during summer varied moderately (0.4-2.2 ng m-3) and independently of the population of each site, with the highest values observed in the areas of Piraeus and Volos that are affected by port and industrial activities. Winter levels were significantly higher and more spatially variable compared to summer, with the seasonal enhancement ranging from 7 times in Piraeus to 98 times in Ioannina, indicating the large impact of PAH emissions from residential wood burning. Regarding benzo(a)pyrene (BaP), an IARC Group 1 carcinogen and the only EU-regulated PAH, the winter/summer ratios were 24-33 in Athens, Volos, Heraklion and Xanthi; 60 in Piraeus; and 480 in Ioannina, which is afflicted by severe wood-burning pollution events. An excellent correlation was observed between organic carbon (OC) and benzo(a)pyrene (BaP) during the cold period at all urban sites (r2 > 0.8) with stable BaP/OC slopes (0.09-0.14 × 10-3), highlighting the potential use of OC as a proxy for the estimation of BaP in winter conditions. The identified spatiotemporal contrasts, which were explored for the first time for PAHs at such a scale in the Eastern Mediterranean, provide important insights into sources and controlling atmospheric conditions and reveal large deviations in exposure risks among cities that raise the issue of environmental injustice on a national level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA