Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1240018, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664862

RESUMEN

Estrogens induce several regulatory signals in the nervous system that are mainly mediated through estrogen receptors (ERs). ERs are largely expressed in the nervous system, yet the importance of ERs to neural development has only been elucidated over the last decades. Accumulating evidence shows a fundamental role for estrogens in the development of the central and peripheral nervous systems, hence, the contribution of ERs to neural function is now a growing area of research. The conservation of the structure of the ERs and their response to estrogens make the zebrafish an interesting model to dissect the role of estrogens in the nervous system. In this review, we highlight major findings of ER signaling in embryonic zebrafish neural development and compare the similarities and differences to research in rodents. We also discuss how the recent generation of zebrafish ER mutants, coupled with the availability of several transgenic reporter lines, its amenability to pharmacological studies and in vivo live imaging, could help us explore ER function in embryonic neural development.


Asunto(s)
Receptores de Estrógenos , Pez Cebra , Animales , Receptores de Estrógenos/genética , Pez Cebra/genética , Neurogénesis , Estrógenos , Animales Modificados Genéticamente
2.
Dev Dyn ; 252(1): 145-155, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36284447

RESUMEN

BACKGROUND: Schwann cells (SCs) are specialized glial cells of the peripheral nervous system that produce myelin and promote fast action potential propagation. In order to myelinate, SCs engage in a series of events that include migration and division along axons, followed by extensive cytoskeletal rearrangements that ensure axonal ensheathment and myelination. SCs are polarized and extend their processes along an abaxonal-adaxonal axis. Here, we investigate the role of the apical polarity proteins, Pals1a, and aPKCλ, in SC behavior during zebrafish development. RESULTS: We analyzed zebrafish nok and has mutants deficient for pals1a and aPKCλ function respectively. Using live imaging, transmission electron microscopy and whole mount immunostaining, we show that SCs can migrate and divide appropriately, exhibit normal radial sorting, express myelin markers and ensheath axons on time in has and nok mutants. CONCLUSIONS: Pals1a and aPKCλ are not essential for SC migration, division or myelination in zebrafish.


Asunto(s)
Vaina de Mielina , Pez Cebra , Animales , Vaina de Mielina/metabolismo , Células de Schwann , Axones/metabolismo , Neurogénesis , Movimiento Celular/fisiología
3.
Development ; 149(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35938454

RESUMEN

Schwann cells (SCs) migrate along peripheral axons and divide intensively to generate the right number of cells prior to axonal ensheathment; however, little is known regarding the temporal and molecular control of their division and its impact on myelination. We report that Sil, a spindle pole protein associated with autosomal recessive primary microcephaly, is required for temporal mitotic exit of SCs. In sil-deficient cassiopeia (csp-/-) mutants, SCs fail to radially sort and myelinate peripheral axons. Elevation of cAMP, but not Rac1 activity, in csp-/- restores myelin ensheathment. Most importantly, we show a significant decrease in laminin expression within csp-/- posterior lateral line nerve and that forcing Laminin 2 expression in csp-/- fully restores the ability of SCs to myelinate. Thus, we demonstrate an essential role for timely SC division in mediating laminin expression to orchestrate radial sorting and peripheral myelination in vivo.


Asunto(s)
Laminina , Células de Schwann , Axones/metabolismo , División Celular/genética , Células Cultivadas , Laminina/genética , Laminina/metabolismo , Vaina de Mielina/metabolismo , Células de Schwann/metabolismo
4.
Front Pediatr ; 10: 871565, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547535

RESUMEN

Objective: To study the genotypes and phenotypes of cerebral arteriovenous fistulas that drain or do not drain through the vein of Galen, and true vein of Galen aneurysmal malformations, in order to determine whether genotyping could help improve classification of these malformations and their management. Methods: We carried out a retrospective review of genetic and phenotypic data in databases of four centers. All children with cerebral arteriovenous fistula or vein of Galen aneurysmal malformations aged below 18 years at onset were included. We recorded the nature of the genetic variant or absence of variant, age at onset, type of malformation, symptoms at onset (hemorrhage, neurological deficit, hydrocephalus, incidental, and heart failure), type of venous drainage and the long-term outcome. Results: One hundred and fifteen children were included. Autosomal dominant variants were identified in 39% of patients. The most frequent variant affected was the RASA1 gene (25%) followed by EPHB4 (8%) and the HHT-associated genes (5%). HHT gene variants were only observed in pial arteriovenous fistula not draining into the vein of Galen; on the contrary, EPHB4 variants were only seen in genuine vein of Galen aneurysmal malformation. RASA1 variants were identified in all types of shunts. Conclusions: EPHB4 variants seem specific to the vein of Galen aneurysmal malformation, RASA1 variants are associated with either pial arteriovenous fistulas or with genuine VGAM and HHT gene variants seem specific to pial arteriovenous fistulas. The genetic data helps to classify these malformations and to guide treatment toward lowest risk of post-operative cerebral ischemic-hemorrhagic complications.

5.
Sci Rep ; 11(1): 13338, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172795

RESUMEN

The Regulator of G protein signaling 4 (Rgs4) is a member of the RGS proteins superfamily that modulates the activity of G-protein coupled receptors. It is mainly expressed in the nervous system and is linked to several neuronal signaling pathways; however, its role in neural development in vivo remains inconclusive. Here, we generated and characterized a rgs4 loss of function model (MZrgs4) in zebrafish. MZrgs4 embryos showed motility defects and presented reduced head and eye sizes, reflecting defective motoneurons axon outgrowth and a significant decrease in the number of neurons in the central and peripheral nervous system. Forcing the expression of Rgs4 specifically within motoneurons rescued their early defective outgrowth in MZrgs4 embryos, indicating an autonomous role for Rgs4 in motoneurons. We also analyzed the role of Akt, Erk and mechanistic target of rapamycin (mTOR) signaling cascades and showed a requirement for these pathways in motoneurons axon outgrowth and neuronal development. Drawing on pharmacological and rescue experiments in MZrgs4, we provide evidence that Rgs4 facilitates signaling mediated by Akt, Erk and mTOR in order to drive axon outgrowth in motoneurons and regulate neuronal numbers.


Asunto(s)
Neuronas Motoras/metabolismo , Neurogénesis/fisiología , Proyección Neuronal/fisiología , Proteínas RGS/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Pez Cebra/metabolismo , Animales , Axones/metabolismo , Neuronas Eferentes/metabolismo , Transducción de Señal/fisiología
6.
Cells ; 9(12)2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302361

RESUMEN

Cells encounter countless external cues and the specificity of their responses is translated through a myriad of tightly regulated intracellular signals. For this, Rho GTPases play a central role and transduce signals that contribute to fundamental cell dynamic and survival events. Here, we review our knowledge on how zebrafish helped us understand the role of some of these proteins in a multitude of in vivo cellular behaviors. Zebrafish studies offer a unique opportunity to explore the role and more specifically the spatial and temporal dynamic of Rho GTPases activities within a complex environment at a level of details unachievable in any other vertebrate organism.


Asunto(s)
Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Proteínas de Unión al GTP rho/metabolismo , Animales , Movimiento Celular , Regeneración , Transducción de Señal , Pez Cebra/metabolismo , Pez Cebra/fisiología , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
7.
Cell Mol Life Sci ; 77(1): 161-177, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31161284

RESUMEN

Peripheral nervous system development involves a tight coordination of neuronal birth and death and a substantial remodelling of the myelinating glia cytoskeleton to achieve myelin wrapping of its projecting axons. However, how these processes are coordinated through time is still not understood. We have identified engulfment and cell motility 1, Elmo1, as a novel component that regulates (i) neuronal numbers within the Posterior Lateral Line ganglion and (ii) radial sorting of axons by Schwann cells (SC) and myelination in the PLL system in zebrafish. Our results show that neuronal and myelination defects observed in elmo1 mutant are rescued through small GTPase Rac1 activation. Inhibiting macrophage development leads to a decrease in neuronal numbers, while peripheral myelination is intact. However, elmo1 mutants do not show defective macrophage activity, suggesting a role for Elmo1 in PLLg neuronal development and SC myelination independent of macrophages. Forcing early Elmo1 and Rac1 expression specifically within SCs rescues elmo1-/- myelination defects, highlighting an autonomous role for Elmo1 and Rac1 in radial sorting of axons by SCs and myelination. This uncovers a previously unknown function of Elmo1 that regulates fundamental aspects of PNS development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Vaina de Mielina/metabolismo , Neurogénesis , Neuronas/citología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Proteína de Unión al GTP rac1/metabolismo , Animales , Apoptosis , Axones/metabolismo , Axones/ultraestructura , Movimiento Celular , Neuronas/metabolismo , Neuronas/ultraestructura , Nervios Periféricos/crecimiento & desarrollo , Nervios Periféricos/ultraestructura , Células de Schwann/citología , Células de Schwann/metabolismo , Células de Schwann/ultraestructura
8.
Brain ; 141(4): 979-988, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29444212

RESUMEN

See Meschia (doi:10.1093/brain/awy066) for a scientific commentary on this article.Vein of Galen aneurysmal malformation is a congenital anomaly of the cerebral vasculature representing 30% of all paediatric vascular malformations. We conducted whole exome sequencing in 19 unrelated patients presenting this malformation and subsequently screened candidate genes in a cohort of 32 additional patients using either targeted exome or Sanger sequencing. In a cohort of 51 patients, we found five affected individuals with heterozygous mutations in EPHB4 including de novo frameshift (p.His191Alafs*32) or inherited deleterious splice or missense mutations predicted to be pathogenic by in silico tools. Knockdown of ephb4 in zebrafish embryos leads to specific anomalies of dorsal cranial vessels including the dorsal longitudinal vein, which is the orthologue of the median prosencephalic vein and the embryonic precursor of the vein of Galen. This model allowed us to investigate EPHB4 loss-of-function mutations in this disease by the ability to rescue the brain vascular defect in knockdown zebrafish co-injected with wild-type, but not truncated EPHB4, mimicking the p.His191Alafs mutation. Our data showed that in both species, loss of function mutations of EPHB4 result in specific and similar brain vascular development anomalies. Recently, EPHB4 germline mutations have been reported in non-immune hydrops fetalis and in cutaneous capillary malformation-arteriovenous malformation. Here, we show that EPHB4 mutations are also responsible for vein of Galen aneurysmal malformation, indicating that heterozygous germline mutations of EPHB4 result in a large clinical spectrum. The identification of EPHB4 pathogenic mutations in patients presenting capillary malformation or vein of Galen aneurysmal malformation should lead to careful follow-up of pregnancy of carriers for early detection of anomaly of the cerebral vasculature in order to propose optimal neonatal care. Endovascular embolization indeed greatly improved the prognosis of patients.


Asunto(s)
Mutación/genética , Receptor EphB4/genética , Malformaciones de la Vena de Galeno/genética , Angiografía de Substracción Digital , Animales , Animales Modificados Genéticamente , Estudios de Cohortes , Nervios Craneales/anomalías , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Embrión no Mamífero , Femenino , Edad Gestacional , Humanos , Imagen por Resonancia Magnética , Masculino , Oligodesoxirribonucleótidos Antisentido/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor EphB4/metabolismo , Malformaciones de la Vena de Galeno/diagnóstico por imagen , Secuenciación del Exoma , Pez Cebra
9.
PLoS Genet ; 12(11): e1006459, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27902705

RESUMEN

Axon ensheathment by specialized glial cells is an important process for fast propagation of action potentials. The rapid electrical conduction along myelinated axons is mainly due to its saltatory nature characterized by the accumulation of ion channels at the nodes of Ranvier. However, how these ion channels are transported and anchored along axons is not fully understood. We have identified N-myc downstream-regulated gene 4, ndrg4, as a novel factor that regulates sodium channel clustering in zebrafish. Analysis of chimeric larvae indicates that ndrg4 functions autonomously within neurons for sodium channel clustering at the nodes. Molecular analysis of ndrg4 mutants shows that expression of snap25 and nsf are sharply decreased, revealing a role of ndrg4 in controlling vesicle exocytosis. This uncovers a previously unknown function of ndrg4 in regulating vesicle docking and nodes of Ranvier organization, at least through its ability to finely tune the expression of the t-SNARE/NSF machinery.


Asunto(s)
Proteínas Musculares/genética , Proteínas Sensibles a N-Etilmaleimida/biosíntesis , Nódulos de Ranvier/genética , Proteína 25 Asociada a Sinaptosomas/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Axones/metabolismo , Exocitosis/genética , Regulación de la Expresión Génica , Humanos , Proteínas Musculares/metabolismo , Proteínas Sensibles a N-Etilmaleimida/genética , Neuroglía/metabolismo , Neuronas/metabolismo , Nódulos de Ranvier/metabolismo , Células de Schwann , Canales de Sodio/genética , Canales de Sodio/metabolismo , Transmisión Sináptica/genética , Proteína 25 Asociada a Sinaptosomas/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
10.
Neural Dev ; 9: 9, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24755297

RESUMEN

BACKGROUND: Morphogenesis of the zebrafish neural tube requires the coordinated movement of many cells in both time and space. A good example of this is the movement of the cells in the zebrafish neural plate as they converge towards the dorsal midline before internalizing to form a neural keel. How these cells are regulated to ensure that they move together as a coherent tissue is unknown. Previous work in other systems has suggested that the underlying mesoderm may play a role in this process but this has not been shown directly in vivo. RESULTS: Here we analyze the roles of subjacent mesoderm in the coordination of neural cell movements during convergence of the zebrafish neural plate and neural keel formation. Live imaging demonstrates that the normal highly coordinated movements of neural plate cells are lost in the absence of underlying mesoderm and the movements of internalization and neural tube formation are severely disrupted. Despite this, neuroepithelial polarity develops in the abnormal neural primordium but the resulting tissue architecture is very disorganized. CONCLUSIONS: We show that the movements of cells in the zebrafish neural plate are highly coordinated during the convergence and internalization movements of neurulation. Our results demonstrate that the underlying mesoderm is required for these coordinated cell movements in the zebrafish neural plate in vivo.


Asunto(s)
Movimiento Celular , Mesodermo/embriología , Placa Neural/embriología , Tubo Neural/embriología , Pez Cebra/embriología , Animales , Tipificación del Cuerpo , Ligandos de Señalización Nodal/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(12): 4584-9, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24623856

RESUMEN

The Tau protein is the major component of intracellular filaments observed in a number of neurodegenerative diseases known as tauopathies. The pathological mutant of Tau containing a proline-to-leucine mutation at position 301 (P301L) leads to severe human tauopathy. Here, we assess the impact of FK506-binding protein with a molecular mass of ∼52 kDa (FKBP52), an immunophilin protein that interacts with physiological Tau, on Tau-P301L activity. We identify a direct interaction of FKBP52 with Tau-P301L and its phosphorylated forms and demonstrate FKBP52's ability to induce the formation of Tau-P301L oligomers. EM analysis shows that Tau-P301L oligomers, induced by FKBP52, can assemble into filaments. In the transgenic zebrafish expressing the human Tau-P301L mutant, FKBP52 knockdown is sufficient to redrive defective axonal outgrowth and branching related to Tau-P301L expression in spinal primary motoneurons. This result correlates with a significant reduction of pT181 pathological phosphorylated Tau and with recovery of the stereotypic escape response behavior. Collectively, FKBP52 appears to be an endogenous candidate that directly interacts with the pathogenic Tau-P301L and modulates its function in vitro and in vivo.


Asunto(s)
Modelos Biológicos , Proteínas de Unión a Tacrolimus/fisiología , Tauopatías/patología , Proteínas tau/fisiología , Animales , Animales Modificados Genéticamente , Biopolímeros/metabolismo , Muerte Celular/genética , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Técnicas In Vitro , Neuronas Motoras/metabolismo , Fosforilación , Conducta Estereotipada , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Tauopatías/fisiopatología , Pez Cebra/fisiología , Proteínas tau/metabolismo
12.
Am J Hum Genet ; 91(1): 5-14, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22703880

RESUMEN

Spinal muscular atrophy (SMA) is a clinically and genetically heterogeneous disease characterized by the degeneration of lower motor neurons. The most frequent form is linked to mutations in SMN1. Childhood SMA associated with progressive myoclonic epilepsy (SMA-PME) has been reported as a rare autosomal-recessive condition unlinked to mutations in SMN1. Through linkage analysis, homozygosity mapping, and exome sequencing in three unrelated SMA-PME-affected families, we identified a homozygous missense mutation (c.125C>T [p.Thr42Met]) in exon 2 of ASAH1 in the affected children of two families and the same mutation associated with a deletion of the whole gene in the third family. Expression studies of the c.125C>T mutant cDNA in Farber fibroblasts showed that acid-ceramidase activity was only 32% of that generated by normal cDNA. This reduced activity was able to normalize the ceramide level in Farber cells, raising the question of the pathogenic mechanism underlying the CNS involvement in deficient cells. Morpholino knockdown of the ASAH1 ortholog in zebrafish led to a marked loss of motor-neuron axonal branching, a loss that is associated with increased apoptosis in the spinal cord. Our results reveal a wide phenotypic spectrum associated with ASAH1 mutations. An acid-ceramidase activity below 10% results in Farber disease, an early-onset disease starting with subcutaneous lipogranulomata, joint pain, and hoarseness of the voice, whereas a higher residual activity might be responsible for SMA-PME, a later-onset phenotype restricted to the CNS and starting with lower-motor-neuron disease.


Asunto(s)
Ceramidasa Ácida/genética , Mutación , Atrofias Musculares Espinales de la Infancia/genética , Adolescente , Animales , Niño , Preescolar , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Epilepsias Mioclónicas Progresivas/genética , Linaje , Pez Cebra
13.
J Neurosci ; 31(10): 3729-42, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21389228

RESUMEN

Wnt/ß-catenin signaling plays a major role in the development of the nervous system and contributes to neuronal plasticity. However, its role in myelination remains unclear. Here, we identify the Wnt/ß-catenin pathway as an essential driver of myelin gene expression. The selective inhibition of Wnt components by small interfering RNA or dominant-negative forms blocks the expression of myelin protein zero (MPZ) and peripheral myelin protein 22 (PMP22) in mouse Schwann cells and proteolipid protein in mouse oligodendrocytes. Moreover, the activation of Wnt signaling by recombinant Wnt1 ligand increases by threefold the transcription of myelin genes and enhances the binding of ß-catenin to T-cell factor/lymphoid-enhancer factor transcription factors present in the vicinity of the MPZ and PMP22 promoters. Most important, loss-of-function analyses in zebrafish embryos show, in vivo, a key role for Wnt/ß-catenin signaling in the expression of myelin genes and in myelin sheath compaction, both in the peripheral and central nervous systems. Inhibition of Wnt/ß-catenin signaling resulted in hypomyelination, without affecting Schwann cell and oligodendrocyte generation or axonal integrity. The present findings attribute to Wnt/ß-catenin pathway components an essential role in myelin gene expression and myelinogenesis.


Asunto(s)
Vaina de Mielina/genética , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Análisis de Varianza , Animales , Línea Celular , Células Cultivadas , Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones , Proteína P0 de la Mielina/genética , Proteína P0 de la Mielina/metabolismo , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Wnt/genética , Pez Cebra , beta Catenina/genética
14.
Methods Mol Biol ; 546: 145-51, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19378103

RESUMEN

A method is described that allows the introduction by electroporation of either small dyes or larger RNA, DNA, or morpholino constructs into single cells or small groups of cells in zebrafish embryos or larvae. The dye or construct is delivered to cells via a patch-like microelectrode that also delivers the electroporation stimulus train. This technique allows the experimenter to target cells of their choice at a particular time of development and at a particular location in the embryo, and is useful for fate mapping, analysing neuronal organisation, ectopic expression and gene knockdown experiments.


Asunto(s)
Biología Evolutiva/métodos , Electroporación/métodos , Pez Cebra/embriología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , ADN/genética , ADN/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Colorantes Fluorescentes/farmacología , Larva/citología , Larva/efectos de los fármacos , Microscopía , ARN/genética , ARN/metabolismo , Rodaminas/farmacología , Factores de Tiempo , Pez Cebra/metabolismo
15.
Nature ; 446(7137): 797-800, 2007 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-17392791

RESUMEN

The development of cell polarity is an essential prerequisite for tissue morphogenesis during embryogenesis, particularly in the development of epithelia. In addition, oriented cell division can have a powerful influence on tissue morphogenesis. Here we identify a novel mode of polarized cell division that generates pairs of neural progenitors with mirror-symmetric polarity in the developing zebrafish neural tube and has dramatic consequences for the organization of embryonic tissue. We show that during neural rod formation the polarity protein Pard3 is localized to the cleavage furrow of dividing progenitors, and then mirror-symmetrically inherited by the two daughter cells. This allows the daughter cells to integrate into opposite sides of the developing neural tube. Furthermore, these mirror-symmetric divisions have powerful morphogenetic influence: when forced to occur in ectopic locations during neurulation, they orchestrate the development of mirror-image pattern formation and the consequent generation of ectopic neural tubes.


Asunto(s)
Tipificación del Cuerpo , Polaridad Celular , Células Epiteliales/citología , Sistema Nervioso/citología , Sistema Nervioso/embriología , Neuronas/citología , Pez Cebra/embriología , Animales , Proteínas Portadoras/metabolismo , División Celular , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Proteínas de Pez Cebra/metabolismo
16.
Exp Neurol ; 183(2): 499-507, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14552890

RESUMEN

Synemin (Syn) is an intermediate filament (IF) protein. To gain insight into a morphogenetic role of Syn, we have studied its expression patterns in the developing human retina and lens and compared it with those of other IF proteins. In addition, we have tested Syn expression in fetuses (23 and 28 weeks) affected by Walker-Warburg syndrome (WWS), Meckel syndrome, and trisomy 13. In the retina, Syn expression starts in the nerve fiber and ganglion cell layers (NFL and GCL) at 15 weeks, remains there in up to 20 weeks, and spreads to other layers and may be colocalized with vimentin, GFA, or neurofilaments in the subsequent 16 weeks. This expansion of Synemin expression from 20 to 28 weeks is not observed in WWS in which Syn immunoreactivity in NFL is reduced and Vim expression is increased. Changes are seen in Syn or vimentin expressions in the retinae of 23-week-old Meckel syndrome or 28-week-old trisomy 13 fetuses. Syn expression in the lens is, at first (16 weeks), uniformly distributed, becoming stronger in the epithelium of the anterior part at 25 weeks and later. As in the retina, Syn expression in lens is also selectively affected in WWS. The colocalization of Synemin with vimentin, GFA, or NF supports the idea that Syn is a key cross-linking protein that connects different cytoskeletal structures. Moreover, stagnant Syn expression in WWS retina and lens reinforces the notion of a significant role of this protein in morphogenesis.


Asunto(s)
Enfermedades Fetales/metabolismo , Enfermedades Genéticas Congénitas/metabolismo , Cristalino/metabolismo , Proteínas Musculares/biosíntesis , Malformaciones del Sistema Nervioso/metabolismo , Retina/metabolismo , Enfermedades Fetales/patología , Enfermedades Genéticas Congénitas/patología , Proteína Ácida Fibrilar de la Glía/biosíntesis , Humanos , Inmunohistoquímica , Proteínas de Filamentos Intermediarios , Cristalino/anomalías , Cristalino/patología , Malformaciones del Sistema Nervioso/patología , Proteínas de Neurofilamentos/biosíntesis , Valores de Referencia , Retina/anomalías , Retina/patología , Síndrome , Trisomía/patología , Vimentina/biosíntesis
17.
Neuron ; 39(3): 423-38, 2003 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-12895418

RESUMEN

The mechanisms that establish behavioral, cognitive, and neuroanatomical asymmetries are poorly understood. In this study, we analyze the events that regulate development of asymmetric nuclei in the dorsal forebrain. The unilateral parapineal organ has a bilateral origin, and some parapineal precursors migrate across the midline to form this left-sided nucleus. The parapineal subsequently innervates the left habenula, which derives from ventral epithalamic cells adjacent to the parapineal precursors. Ablation of cells in the left ventral epithalamus can reverse laterality in wild-type embryos and impose the direction of CNS asymmetry in embryos in which laterality is usually randomized. Unilateral modulation of Nodal activity by Lefty1 can also impose the direction of CNS laterality in embryos with bilateral expression of Nodal pathway genes. From these data, we propose that laterality is determined by a competitive interaction between the left and right epithalamus and that Nodal signaling biases the outcome of this competition.


Asunto(s)
Lateralidad Funcional/fisiología , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Movimiento Celular/fisiología , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/crecimiento & desarrollo , Datos de Secuencia Molecular , Prosencéfalo/citología , Pez Cebra
18.
Med Sci (Paris) ; 19(4): 465-71, 2003 Apr.
Artículo en Francés | MEDLINE | ID: mdl-12836220

RESUMEN

The application of stem cell therapy to cure degenerative diseases offers immense possibilities, but the research in this field is the subject of ethical debates raised by the question of destructive research on early human embryos. Stem cells taken in the adult constitute an alternative to human embryonic stem cells, but our knowledge on totipotent or pluripotent cells is currently insufficient. Furthermore, many questions must be solved before selection and differentiation of these cells in a given cellular type can be controlled on a routine basis. What are the molecular characteristics of an adult stem cell? What are the mechanisms involved in cell reprogramming? Which signals control stem cell replication and differentiation? Basic research activities must be carried out in order to clarify all these points. In this context, the regeneration of vertebrate appendages provides a model for this type of research. The regeneration process is defined by both the morphological and functional reconstruction of a part of a living organism, which has previously been destroyed. But why are some vertebrates able to regenerate complex structures and others apparently not? Among most vertebrates, the capacity to regenerate is limited to some tissues. It is however possible to observe the regeneration of appendages (limb, tail, fin, jaw, etc.) among several amphibians and fish. This regeneration leads to re-forming of the amputated part with a complete restoration of its shape, segmentation and function. Why is the amputation of limbs not followed by regeneration in mammals and birds: absence of stem cells, absence of recruitment signals for these cells, or absence of signal receptivity? This review constitutes a report on the current understanding of the basis of on regeneration of legs in tetrapods and of fins in fish with an emphasis in the role of the nervous system in this process.


Asunto(s)
Extremidades/fisiología , Regeneración/fisiología , Células Madre/fisiología , Vertebrados/fisiología , Animales , Fibras Nerviosas/fisiología , Regeneración Nerviosa/fisiología , Filogenia , Regeneración/genética , Vertebrados/genética
19.
Genesis ; 32(1): 27-31, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11835671

RESUMEN

Zebrafish represents an excellent model to study the function of vertebrate genes (e.g., well-developed genetics, large number of mutants, and genomic sequencing in progress), inasmuch as we have tools to manipulate gene expression. Recent use of injected morpholinos in eggs provides a good method to " knockdown " gene expression in early development (Nasevicius and Ekker, 2000), and the "caged" RNA injected in eggs allows to overexpress a gene in a specific set of cells (Ando et al., 2001). However, a method to specifically modify gene expression in the juvenile or in the adult is still missing. Such a method would be a very powerful tool to understand gene function in differentiated tissues. We describe here an electroporation-based approach, which allows gene transfer in adult tissues. Its efficiency was assessed using a GFP (green fluorescent protein) dependent assay. We then used this method to disrupt the Fgf signalling pathway during the process of regeneration.


Asunto(s)
Electroporación/métodos , Técnicas de Transferencia de Gen , Regeneración/fisiología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes , Transducción de Señal , Pez Cebra/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...