Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38562680

RESUMEN

Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the insular cortex (IC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic activity onto IC-BLA projections would be facilitated following the retrieval of an ethanol-conditioned taste aversion (CTA). Consistent with this hypothesis, frequency of mIPSCs was increased following retrieval of an ethanol-CTA across cell layers in IC-BLA projection neurons. This increase in GABAergic plasticity occurred in both a circuit-specific and learning-dependent manner. Additionally, local inhibitory inputs onto layer 2/3 IC-BLA projection neurons were greater in number and strength following ethanol-CTA. Finally, DREADD-mediated inhibition of IC parvalbumin-expressing cells blunted the retrieval of ethanol-CTA in male, but not female, mice. Collectively, this work implicates a circuit-specific and learning-dependent increase in GABAergic tone following retrieval of an ethanol-CTA, thereby advancing our understanding of how the aversive effects of ethanol are encoded in the brain.

2.
J Neurosci ; 43(28): 5158-5171, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37217307

RESUMEN

Alcohol use disorder is complex and multifaceted, involving the coordination of multiple signaling systems across numerous brain regions. Previous work has indicated that both the insular cortex and dynorphin (DYN)/kappa opioid receptor (KOR) systems contribute to excessive alcohol use. More recently, we identified a microcircuit in the medial aspect of the insular cortex that signals through DYN/KOR. Here, we explored the role of insula DYN/KOR circuit components on alcohol intake in a long-term intermittent access (IA) procedure. Using a combination of conditional knock-out strategies and site-directed pharmacology, we discovered distinct and sex-specific roles for insula DYN and KOR in alcohol drinking and related behavior. Our findings show that insula DYN deletion blocked escalated consumption and decreased the overall intake of and preference for alcohol in male and female mice. This effect was specific to alcohol in male mice, as DYN deletion did not impact sucrose intake. Further, insula KOR antagonism reduced alcohol intake and preference during the early phase of IA in male mice only. Alcohol consumption was not affected by insula KOR knockout in either sex. In addition, we found that long-term IA decreased the intrinsic excitability of DYN and deep layer pyramidal neurons (DLPNs) in the insula of male mice. Excitatory synaptic transmission was also impacted by IA, as it drove an increase in excitatory synaptic drive in both DYN neurons and DLPNs. Combined, our findings suggest there is a dynamic interplay between excessive alcohol consumption and insula DYN/KOR microcircuitry.SIGNIFICANCE STATEMENT The insular cortex is a complex region that serves as an integratory hub for sensory inputs. In our previous work, we identified a microcircuit in the insula that signals through the kappa opioid receptor (KOR) and its endogenous ligand dynorphin (DYN). Both the insula and DYN/KOR systems have been implicated in excessive alcohol use and alcohol use disorder (AUD). Here, we use converging approaches to determine how insula DYN/KOR microcircuit components contribute to escalated alcohol consumption. Our findings show that insula DYN/KOR systems regulate distinct phases of alcohol consumption in a sex-specific manner, which may contribute to the progression to AUD.


Asunto(s)
Alcoholismo , Receptores Opioides kappa , Femenino , Ratones , Masculino , Animales , Receptores Opioides kappa/metabolismo , Dinorfinas/metabolismo , Corteza Insular , Consumo de Bebidas Alcohólicas , Etanol
3.
Addict Neurosci ; 32022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36034165

RESUMEN

Binge drinking is a common pattern of excessive alcohol consumption associated with Alcohol Use Disorder (AUD) and unraveling the neurocircuitry that promotes this type of drinking is critical to the development of novel therapeutic interventions. The septal region was once a focal point of alcohol research yet has seen limited study over the last decade in relation to binge drinking. Numerous studies point to involvement of the dorsal septum (dSep) in excessive drinking and withdrawal, but few studies have manipulated this region in the context of binge drinking behavior. The present experiments were primarily designed to determine the effect of chemogenetic manipulation of the dSep on binge-like alcohol drinking in male and female C57BL/6J mice. Mice received bilateral infusion of AAVs harboring hM4Di, hM3Dq, or mCherry into the dSep and subjects were challenged with systemic administration of clozapine-N-oxide (CNO) and vehicle in the context of binge-like alcohol consumption, locomotor activity, and sucrose drinking. CNO-mediated activation (hM3Dq) of the dSep resulted in increased binge-like alcohol consumption, locomotor activity, and sucrose intake in males. DSep activation promoted sucrose drinking in female mice, but alcohol intake and locomotor activity were unaffected. Conversely, silencing (hM4Di) of the dSep modestly decreased locomotor activity in males and did not influence alcohol or sucrose intake in either sex. These data support a role for the dSep in promoting binge-like drinking behavior in a sex-dependent fashion and suggests a broad role for the region in the modulation of general appetitive behaviors and locomotor activity.

4.
Neurobiol Aging ; 118: 13-24, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35843109

RESUMEN

Female APOE4 carriers are at greatest risk of Alzheimer's disease (AD). The potent estrogen 17ß-estradiol (E2) may mediate AD risk, as the onset of memory decline coincides with the menopausal transition. Whether APOE genotype mediates E2's effects on memory and neuronal morphology is poorly understood. We used the APOE+/+/5xFAD+/- (EFAD) mouse model to examine how APOE3 homozygote (E3FAD), APOE3/4 heterozygote (E3/4FAD), and APOE4 homozygote (E4FAD) genotypes modulate effects of E2 on object and spatial memory consolidation, dendritic spine density, and dorsal hippocampal estrogen receptor expression in 6-month-old ovariectomized EFAD mice. Dorsal hippocampal E2 infusion enhanced memory consolidation and increased CA1 apical spine density in E3FAD and E3/4FAD, but not E4FAD, mice. CA1 basal mushroom spines were also increased by E2 in E3FADs. E4FAD mice exhibited reduced CA1 and mPFC basal spine density, and increased dorsal hippocampal ERα protein, independent of E2. Overall, E2 benefitted hippocampal memory and structural plasticity in females bearing one or no APOE4 allele, whereas two APOE4 alleles impeded the memory-enhancing and spinogenic effects of E2.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E3/farmacología , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Estradiol/metabolismo , Estradiol/farmacología , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Homocigoto , Ratones , Ratones Transgénicos
5.
Horm Behav ; 140: 105124, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35101701

RESUMEN

Anxiety is a prominent and debilitating symptom in Alzheimer's disease (AD) patients. Carriers of APOE4, the greatest genetic risk factor for late-onset AD, may experience increased anxiety relative to carriers of other APOE genotypes. However, whether APOE4 genotype interacts with other AD risk factors to promote anxiety-like behaviors is less clear. Here, we used open field exploration to assess anxiety-like behavior in an EFAD mouse model of AD that expresses five familial AD mutations (5xFAD) and human APOE3 or APOE4. We first examined whether APOE4 genotype exacerbates anxiety-like exploratory behavior in the open field relative to APOE3 genotype in a sex-specific manner among six-month-old male and female E3FAD (APOE3+/+/5xFAD+/-) and E4FAD mice (APOE4+/+/5xFAD+/-). Next, we determined whether circulating ovarian hormone loss influences exploratory behavior in the open field among female E3FAD and E4FADs. APOE4 genotype was associated with decreased time in the center of the open field, particularly among female EFADs. Furthermore, ovariectomy (OVX) decreased time in the center of the open field among female E3FADs to levels similar to intact and OVXed E4FAD females. Our results suggest that APOE4 genotype increased anxiety-like behavior in the open field, and that ovarian hormones may protect against an anxiety-like phenotype in female E3FAD, but not E4FAD mice.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Apolipoproteínas E/genética , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Animales , Apolipoproteína E4/genética , Femenino , Genotipo , Hormonas , Masculino , Ratones , Ratones Transgénicos
6.
Neurobiol Aging ; 112: 74-86, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35051676

RESUMEN

Women carriers of APOE4, the greatest genetic risk factor for late-onset Alzheimer's disease (AD), are at highest risk of developing AD, yet factors underlying interactions between APOE4 and sex are not well characterized. Here, we examined how sex and APOE3 or APOE4 genotypes modulate object and spatial memory, dendritic spine density and branching, and protein expression in 6-month-old male and female E3FAD and E4FAD mice (APOE+/+/5xFAD+/-). APOE4 negatively impacted object recognition and spatial memory, with male E3FADs exhibiting the best memory across 2 object-based tasks. In both sexes, APOE4 reduced basal dendritic spine density in the medial prefrontal cortex and dorsal hippocampus. APOE4 reduced dorsal hippocampal levels of PDS-95, synaptophysin, and phospho-CREB, yet increased levels of ERα. E4FAD females exhibited strikingly increased GFAP levels, in addition to the lowest levels of PSD-95 and pCREB. Overall, our results suggest that APOE4 negatively impacts object memory, dendritic spine density, and levels of hippocampal synaptic proteins and ERα. However, the general lack of sex differences or sex by genotype interactions suggests that the sex-specific effects of APOE4 on AD risk may be related to factors unexplored in the present study.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Apolipoproteínas E/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Espinas Dendríticas/metabolismo , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos
7.
Nat Rev Neurosci ; 21(10): 535-550, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32879508

RESUMEN

Although hormones such as glucocorticoids have been broadly accepted in recent decades as general neuromodulators of memory processes, sex steroid hormones such as the potent oestrogen 17ß-oestradiol have been less well recognized by the scientific community in this capacity. The predominance of females in studies of oestradiol and memory and the general (but erroneous) perception that oestrogens are 'female' hormones have probably prevented oestradiol from being more widely considered as a key memory modulator in both sexes. Indeed, although considerable evidence supports a crucial role for oestradiol in regulating learning and memory in females, a growing body of literature indicates a similar role in males. This Review discusses the mechanisms of oestradiol signalling and provides an overview of the effects of oestradiol on spatial, object recognition, social and fear memories. Although the primary focus is on data collected in females, effects of oestradiol on memory in males will be discussed, as will sex differences in the molecular mechanisms that regulate oestrogenic modulation of memory, which may have important implications for the development of future cognitive therapeutics.


Asunto(s)
Encéfalo/fisiología , Estradiol/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Neuronas/fisiología , Miedo/fisiología , Femenino , Humanos , Masculino , Caracteres Sexuales , Transducción de Señal
8.
Front Neuroendocrinol ; 59: 100860, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32781195

RESUMEN

Cognitive behaviors, such as episodic memory formation, are complex processes involving coordinated activity in multiple brain regions. However, much of the research on hormonal regulation of cognition focuses on manipulation of one region at a time or provides a single snapshot of how a systemic treatment affects multiple brain regions without investigating how these regions might interact to mediate hormone effects. Here, we use estrogenic regulation of episodic memory as an example of how circuit-based approaches may be incorporated into future studies of hormones and cognition. We first review basic episodic memory circuitry, rapid mechanisms by which 17ß-estradiol can alter circuit activity, and current knowledge about 17ß-estradiol's effects on episodic memory. Next, we outline approaches that researchers can employ to consider circuit effects in their estrogen research and provide examples of how these methods have been used to examine hormonal regulation of memory and other behaviors.


Asunto(s)
Estradiol/metabolismo , Hipocampo/fisiología , Memoria Episódica , Corteza Prefrontal/fisiología , Animales , Humanos
9.
J Neurosci ; 39(48): 9598-9610, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31628182

RESUMEN

Activation of the membrane estrogen receptor G-protein-coupled estrogen receptor (GPER) in ovariectomized mice via the GPER agonist G-1 mimics the beneficial effects of 17ß-estradiol (E2) on hippocampal CA1 spine density and memory consolidation, yet the cell-signaling mechanisms mediating these effects remain unclear. The present study examined the role of actin polymerization and c-Jun N-terminal kinase (JNK) phosphorylation in mediating effects of dorsal hippocampally infused G-1 on CA1 dendritic spine density and consolidation of object recognition and spatial memories in ovariectomized mice. We first showed that object learning increased apical CA1 spine density in the dorsal hippocampus (DH) within 40 min. We then found that DH infusion of G-1 increased both CA1 spine density and phosphorylation of the actin polymerization regulator cofilin, suggesting that activation of GPER may increase spine morphogenesis through actin polymerization. As with memory consolidation in our previous work (Kim et al., 2016), effects of G-1 on CA1 spine density and cofilin phosphorylation depended on JNK phosphorylation in the DH. Also consistent with our previous findings, E2-induced cofilin phosphorylation was not dependent on GPER activation. Finally, we found that infusion of the actin polymerization inhibitor, latrunculin A, into the DH prevented G-1 from increasing apical CA1 spine density and enhancing both object recognition and spatial memory consolidation. Collectively, these data demonstrate that GPER-mediated hippocampal spinogenesis and memory consolidation depend on JNK and cofilin signaling, supporting a critical role for actin polymerization in the GPER-induced regulation of hippocampal function in female mice.SIGNIFICANCE STATEMENT Emerging evidence suggests that G-protein-coupled estrogen receptor (GPER) activation mimics effects of 17ß-estradiol on hippocampal memory consolidation. Unlike canonical estrogen receptors, GPER activation is associated with reduced cancer cell proliferation; thus, understanding the molecular mechanisms through which GPER regulates hippocampal function may provide new avenues for the development of drugs that provide the cognitive benefits of estrogens without harmful side effects. Here, we demonstrate that GPER increases CA1 dendritic spine density and hippocampal memory consolidation in a manner dependent on actin polymerization and c-Jun N-terminal kinase phosphorylation. These findings provide novel insights into the role of GPER in mediating hippocampal morphology and memory consolidation, and may suggest first steps toward new therapeutics that more safely and effectively reduce memory decline in menopausal women.


Asunto(s)
Actinas/metabolismo , Región CA1 Hipocampal/metabolismo , Espinas Dendríticas/metabolismo , Consolidación de la Memoria/fisiología , Polimerizacion , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Actinas/análisis , Animales , Región CA1 Hipocampal/química , Espinas Dendríticas/química , Femenino , Ratones , Ratones Endogámicos C57BL , Receptores de Estrógenos/análisis , Receptores Acoplados a Proteínas G/análisis
10.
Horm Behav ; 114: 104545, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31228421

RESUMEN

The memory-enhancing effects of 17ß-estradiol (E2) depend upon rapid activation of several cell-signaling cascades within the dorsal hippocampus (DH). Among the many cell-signaling pathways that mediate memory processes, Wnt/ß-catenin signaling has emerged as a potential key player because of its importance to hippocampal development and synaptic plasticity. However, whether E2 interacts with Wnt/ß-catenin signaling to promote memory consolidation is unknown. Therefore, the present study examined whether Wnt/ß-catenin signaling within the DH is necessary for E2-induced memory consolidation in ovariectomized mice tested in the object recognition and object placement tasks. Ovariectomized C57BL/6 mice received immediate post-training infusions of E2 or vehicle into the dorsal third ventricle plus the endogenous Wnt/ß-catenin antagonist Dickkopf-1 (Dkk-1) or vehicle into the DH to assess whether the memory-enhancing effects of E2 depend on activation of Wnt/ß-catenin signaling. Our results suggest that Dkk-1 blocks E2-induced memory enhancement as hypothesized, but may do so by only moderately blunting Wnt/ß-catenin signaling while concurrently activating Wnt/JNK signaling. The current study provides novel insights into the mechanisms through which E2 enhances memory consolidation in the DH, as well as critical information about the mechanistic actions of Dkk-1.


Asunto(s)
Estradiol/farmacología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Consolidación de la Memoria/efectos de los fármacos , Animales , Femenino , Hipocampo/efectos de los fármacos , Infusiones Intraventriculares , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Ovariectomía , Reconocimiento en Psicología/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
11.
eNeuro ; 6(2)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31016230

RESUMEN

The importance of the dorsal hippocampus (DH) in mediating the memory-enhancing effects of the sex-steroid hormone 17ß-estradiol (E2) is well established. However, estrogen receptors (ERs) are highly expressed in other brain regions that support memory formation, including the medial prefrontal cortex (mPFC). The mPFC and DH interact to mediate the formation of several types of memory, and behavioral tasks that recruit the mPFC are enhanced by systemic E2 administration, making this region a prime candidate for investigating circuit-level questions regarding the estrogenic regulation of memory. Further, infusion of E2 directly into the DH increases dendritic spine density in both the DH and mPFC, and this effect depends upon rapid activation of cell-signaling pathways in the DH, demonstrating a previously unexplored interaction between the DH and mPFC that led us to question the role of the mPFC in object memory consolidation and the necessity of DH-mPFC interactions in the memory-enhancing effects of E2. Here, we found that infusion of E2 directly into the mPFC of ovariectomized mice increased mPFC apical spine density and facilitated object recognition and spatial memory consolidation, demonstrating that E2 in the mPFC increases spinogenesis and enhances on memory consolidation. Next, chemogenetic suppression of the mPFC blocked the beneficial effects of DH-infused E2 on memory consolidation, indicating that systems-level DH-mPFC interactions are necessary for the memory-enhancing effects of E2. Together, these studies provide evidence that E2 in the mPFC mediates memory formation, and reveal that the DH and mPFC act in concert to support the memory-enhancing effects of E2 in female mice.


Asunto(s)
Espinas Dendríticas/efectos de los fármacos , Estradiol/farmacología , Estrógenos/farmacología , Hipocampo/efectos de los fármacos , Consolidación de la Memoria/efectos de los fármacos , Nootrópicos/farmacología , Corteza Prefrontal/efectos de los fármacos , Reconocimiento en Psicología/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Animales , Estradiol/administración & dosificación , Estrógenos/administración & dosificación , Femenino , Ratones , Ratones Endogámicos C57BL , Nootrópicos/administración & dosificación , Ovariectomía
12.
Neurobiol Learn Mem ; 156: 103-116, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30408525

RESUMEN

The dorsal hippocampus (DH) and medial prefrontal cortex (mPFC) are brain regions essential for processing and storing episodic memory. In rodents, the DH has a well-established role in supporting the consolidation of episodic-like memory in tasks such as object recognition and object placement. However, the role of the mPFC in the consolidation of episodic-like memory tasks remains controversial. Therefore, the present study examined involvement of the DH and mPFC, alone and in combination, in object and spatial recognition memory consolidation in ovariectomized female mice. To this end, we utilized two types of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to inactivate the DH alone, the mPFC alone, or both brain regions concurrently immediately after object training to assess the role of each region in the consolidation of object recognition and spatial memories. Our results using single and multiplexed DREADDS suggest that excitatory activity in the DH and mPFC, alone or in combination, is required for the successful consolidation of object recognition and spatial memories. Together, these studies provide critical insight into how the DH and mPFC work in concert to facilitate memory consolidation in female mice.


Asunto(s)
Técnicas Genéticas , Hipocampo/fisiología , Consolidación de la Memoria/fisiología , Memoria Episódica , Corteza Prefrontal/fisiología , Reconocimiento en Psicología/fisiología , Memoria Espacial/fisiología , Animales , Conducta Animal/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL
13.
Physiol Behav ; 187: 57-66, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28755863

RESUMEN

The potent estrogen 17ß-estradiol (E2) has long been known to regulate the hippocampus and hippocampal-dependent memories in females, and research from the past decade has begun to shed light on the molecular mechanisms through which E2 mediates memory formation in females. Although E2 can also regulate hippocampal function in males, relatively little is known about how E2 influences memory formation in males, or whether sex differences in underlying mechanisms exist. This review, based on a talk given in April 2017 at the American University symposium entitled, "Sex Differences: From Neuroscience to the Clinic and Beyond", first provides an overview of the molecular mechanisms in the dorsal hippocampus through which E2 enhances memory consolidation in ovariectomized female mice. Next, newer research is described demonstrating key roles for the prefrontal cortex and de novo hippocampal E2 synthesis to the memory-enhancing effects of E2 in females. The review then discusses the effects of de novo and exogenous E2 on hippocampal memory consolidation in both sexes, and putative sex differences in the underlying molecular mechanisms through which E2 enhances memory formation. The review concludes by discussing the importance and implications of sex differences in the molecular mechanisms underlying E2-induced memory consolidation for human health.


Asunto(s)
Estrógenos/farmacología , Hipocampo/fisiología , Consolidación de la Memoria/efectos de los fármacos , Ovario/fisiología , Caracteres Sexuales , Animales , Aromatasa/farmacología , Relación Dosis-Respuesta a Droga , Estradiol/metabolismo , Femenino , Hipocampo/efectos de los fármacos , Humanos , Masculino , Ovario/efectos de los fármacos
14.
Proc Natl Acad Sci U S A ; 113(43): 12286-12291, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27791017

RESUMEN

Changes in the functional connectivity (FC) of large-scale brain networks are a prominent feature of brain aging, but defining their relationship to variability along the continuum of normal and pathological cognitive outcomes has proved challenging. Here we took advantage of a well-characterized rat model that displays substantial individual differences in hippocampal memory during aging, uncontaminated by slowly progressive, spontaneous neurodegenerative disease. By this approach, we aimed to interrogate the underlying neural network substrates that mediate aging as a uniquely permissive condition and the primary risk for neurodegeneration. Using resting state (rs) blood oxygenation level-dependent fMRI and a restrosplenial/posterior cingulate cortex seed, aged rats demonstrated a large-scale network that had a spatial distribution similar to the default mode network (DMN) in humans, consistent with earlier findings in younger animals. Between-group whole brain contrasts revealed that aged subjects with documented deficits in memory (aged impaired) displayed widespread reductions in cortical FC, prominently including many areas outside the DMN, relative to both young adults (Y) and aged rats with preserved memory (aged unimpaired, AU). Whereas functional connectivity was relatively preserved in AU rats, they exhibited a qualitatively distinct network signature, comprising the loss of an anticorrelated network observed in Y adults. Together the findings demonstrate that changes in rs-FC are specifically coupled to variability in the cognitive outcome of aging, and that successful neurocognitive aging is associated with adaptive remodeling, not simply the persistence of youthful network dynamics.


Asunto(s)
Envejecimiento/fisiología , Envejecimiento Cognitivo/fisiología , Hipocampo/fisiología , Degeneración Nerviosa/fisiopatología , Animales , Sangre , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiopatología , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Memoria/fisiología , Degeneración Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...