Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Small ; : e2312007, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708799

RESUMEN

Coordinated cell movement is a cardinal feature in tissue organization that highlights the importance of cells working together as a collective unit. Disruptions to this synchronization can have far-reaching pathological consequences, ranging from developmental disorders to tissue repair impairment. Herein, it is shown that metal oxide nanoparticles (NPs), even at low and non-toxic doses (1 and 10 µg mL-1), can perturb the coordinated epithelial cell rotation (CECR) in micropatterned human epithelial cell clusters via distinct nanoparticle-specific mechanisms. Zinc oxide (ZnO) NPs are found to induce significant levels of intracellular reactive oxygen species (ROS) to promote mitogenic activity. Generation of a new localized force field through changes in the cytoskeleton organization and an increase in cell density leads to the arrest of CECR. Conversely, epithelial cell clusters exposed to titanium dioxide (TiO2) NPs maintain their CECR directionality but display suppressed rotational speed in an autophagy-dependent manner. Thus, these findings reveal that nanoparticles can actively hijack the nano-adaptive responses of epithelial cells to disrupt the fundamental mechanics of cooperation and communication in a collective setting.

2.
Adv Healthc Mater ; : e2304529, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38465888

RESUMEN

There is a paradigm shift in biomanufacturing toward continuous bioprocessing but cell-based manufacturing using adherent and suspension cultures, including microcarriers, hydrogel microparticles, and 3D cell aggregates, remains challenging due to the lack of efficient in-line bioprocess monitoring and cell harvesting tools. Herein, a novel label-free microfluidic platform for high throughput (≈50 particles/sec) impedance bioanalysis of biomass, cell viability, and stem cell differentiation at single particle resolution is reported. The device is integrated with a real-time piezo-actuated particle sorter based on user-defined multi-frequency impedance signatures. Biomass profiling of Cytodex-3 microcarriers seeded with adipose-derived mesenchymal stem cells (ADSCs) is first performed to sort well-seeded or confluent microcarriers for downstream culture or harvesting, respectively. Next, impedance-based isolation of microcarriers with osteogenic differentiated ADSCs is demonstrated, which is validated with a twofold increase of calcium content in sorted ADSCs. Impedance profiling of heterogenous ADSCs-encapsulated hydrogel (alginate) microparticles and 3D ADSC aggregate mixtures is also performed to sort particles with high biomass and cell viability to improve cell quality. Overall, the scalable microfluidic platform technology enables in-line sample processing from bioreactors directly and automated analysis of cell quality attributes to maximize cell yield and improve the control of cell quality in continuous cell-based manufacturing.

3.
Adv Healthc Mater ; 13(10): e2303481, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37987244

RESUMEN

Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastatic cancer progression, and current research, which relies heavily on 2D monolayer cultures, falls short in recapitulating the complexity of a 3D tumor microenvironment. To address this limitation, a transcriptomic meta-analysis is conducted on diverse cancer types undergoing EMT in 2D and 3D cultures. It is found that mechanotransduction is elevated in 3D cultures and is further intensified during EMT, but not during 2D EMT. This analysis reveals a distinct 3D EMT gene signature, characterized by extracellular matrix remodeling coordinated by angiopoietin-like 4 (Angptl4) along with other canonical EMT regulators. Utilizing hydrogel-based 3D matrices with adjustable mechanical forces, 3D cancer cultures are established at varying physiological stiffness levels. A YAP:EGR-1 mediated up-regulation of Angptl4 expression is observed, accompanied by an upregulation of mesenchymal markers, at higher stiffness during cancer EMT. Suppression of Angptl4 using antisense oligonucleotides or anti-cAngptl4 antibodies leads to a dose-dependent abolishment of EMT-mediated chemoresistance and tumor self-organization in 3D, ultimately resulting in diminished metastatic potential and stunted growth of tumor xenografts. This unique programmable 3D cancer cultures simulate stiffness levels in the tumor microenvironment and unveil Angptl4 as a promising therapeutic target to inhibit EMT and impede cancer progression.


Asunto(s)
Mecanotransducción Celular , Neoplasias , Humanos , Línea Celular Tumoral , Microambiente Tumoral , Fenómenos Mecánicos , Angiopoyetinas , Transición Epitelial-Mesenquimal/genética , Neoplasias/tratamiento farmacológico
4.
Environ Sci Technol ; 57(48): 19223-19235, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37933439

RESUMEN

Insights into how biological systems respond to high- and low-dose acute environmental stressors are a fundamental aspect of exposome research. However, studying the impact of low-level environmental exposure in conventional in vitro settings is challenging. This study employed a three-dimensional (3D) biomimetic microfluidic lung-on-chip (µLOC) platform and RNA-sequencing to examine the effects of two model anthropogenic engineered nanoparticles (NPs): zinc oxide nanoparticles (Nano-ZnO) and copier center nanoparticles (Nano-CCP). The airway epithelium exposed to these NPs exhibited dose-dependent increases in cytotoxicity and barrier dysregulation (dominance of the external exposome). Interestingly, even nontoxic and low-level exposure (10 µg/mL) of the epithelium compartment to Nano-ZnO triggered chemotaxis of lung fibroblasts toward the epithelium. An increase in α smooth muscle actin (α-SMA) expression and contractile activity was also observed in these cells, indicating a bystander-like adaptive response (dominance of internal exposome). Further bioinformatics and network analysis showed that a low-dose Nano-ZnO significantly induced a robust transcriptomic response and upregulated several hub genes associated with the development of lung fibrosis. We propose that Nano-ZnO, even at a no observable effect level (NOEL) dose according to conventional standards, can function as a potent nanostressor to disrupt airway epithelium homeostasis. This leads to a cascade of profibrotic events in a cross-tissue compartment fashion. Our findings offer new insights into the early acute events of respiratory harm associated with environmental NPs exposure, paving the way for better exposomic understanding of this emerging class of anthropogenic nanopollutants.


Asunto(s)
Exposoma , Nanopartículas , Óxido de Zinc , Biomimética , Microfluídica , Nanopartículas/toxicidad , Fibroblastos , Óxido de Zinc/toxicidad
5.
Adv Healthc Mater ; 12(1): e2201900, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36177679

RESUMEN

Chronic wounds are non-healing wounds characterized by a prolonged inflammation phase. Excessive inflammation leads to elevated protease levels and consequently to a decrease in growth factors at wound sites. Stem cell secretome therapy has been identified as a treatment strategy to modulate the microenvironment of chronic wounds via supplementation with anti-inflammatory/growth factors. However, there is a need to develop better secretome delivery systems that are able to encapsulate the secretome without denaturation, in a sustained manner, and that are fully biocompatible. To address this gap, a recombinant squid suckerin-spider silk fusion protein is developed with cell-adhesion motifs capable of thermal gelation at physiological temperatures to form hydrogels for encapsulation and subsequent release of the stem cell secretome. Freeze-thaw treatment of the protein hydrogel results in a modified porous cryogel that maintains slow degradation and sustained secretome release. Chronic wounds of diabetic mice treated with the secretome-laden cryogel display increased wound closure, presence of endothelial cells, granulation wound tissue thickness, and reduced inflammation with no fibrotic scar formation. Overall, these in vivo indicators of wound healing demonstrate that the fusion protein hydrogel displays remarkable potential as a delivery system for secretome-assisted chronic wound healing.


Asunto(s)
Diabetes Mellitus Experimental , Células Madre Mesenquimatosas , Ratones , Animales , Humanos , Hidrogeles/farmacología , Criogeles , Seda , Secretoma , Células Endoteliales de la Vena Umbilical Humana
6.
ACS Appl Mater Interfaces ; 14(46): 52279-52288, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36375117

RESUMEN

Mesoporous silica nanoparticles have highly versatile structural properties that are suitable for a plethora of applications including catalysis, separation, and nanotherapeutics. We report a one-pot synthesis strategy that generates bimodal mesoporous silica nanoparticles via coassembly of a structure-directing Gemini surfactant (C16-3-16) with a tetraethoxysilane/(3-aminopropyl)triethoxysilane-derived sol additive. Synthesis temperature enables control of the nanoparticle shape, structure, and mesopore architecture. Variations of the aminosilane/alkylsilane molar ratio further enable programmable adjustments of hollow to core-shell and dense nanoparticle morphologies, bimodal pore sizes, and surface chemistries. The resulting Gemini-directed aminated mesoporous silica nanoparticles have excellent carbon dioxide adsorption capacities and antimicrobial properties against Escherichia coli. Our results provide an enhanced understanding of the structure formation of multiscale mesoporous inorganic materials that are desirable for numerous applications such as carbon sequestration, water remediation, and biomedical-related applications.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Dióxido de Silicio/química , Plata , Dióxido de Carbono , Porosidad , Nanopartículas/química , Antibacterianos/farmacología
7.
Nanoscale ; 14(39): 14491-14507, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36106385

RESUMEN

The widespread use of engineered nanomaterials (ENMs) in food products necessitates the understanding of their impact on the gastrointestinal tract (GIT). Herein, we screened several representative food-borne comparator ENMs (i.e. ZnO, SiO2 and TiO2 nanoparticles (NPs)) and report that human colon cancer cells can insidiously exploit ZnO NP-induced adaptive response to acquire resistance against several chemotherapeutic drugs. By employing a conditioning and challenge treatment regime, we demonstrate that repeated exposure to a non-toxic dose of ZnO NPs (20 µM) could dampen the efficacy of cisplatin, paclitaxel and doxorubicin by 10-50% in monolayer culture and 3D spheroids of human colon adenocarcinoma cells. Structure-activity relationship studies revealed a complex interplay between nanoparticle surface chemistry and cell type in determining the chemoresistance-inducing effect, with silica coated ZnO NPs having a negligible influence on the anticancer treatment. Mechanistically, we showed that the pro-survival paracrine signaling was potentiated and propagated by a subset of ZnO NP "stressed" (Zn2++/ROS+) cells to the surrounding "bystander" (Zn2++/ROS-) cells. Transcriptome profiling, bioinformatics analysis and siRNA gene knockdown experiments revealed the nuclear factor erythroid 2-related factor 2 (Nrf2) as the key modulator of the ZnO NP-induced drug resistance. Our findings suggest that a ROS-inducing ENM can emerge as a nano-stressor, capable of regulating the chemosensitivity of colon cancer cells.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Nanopartículas , Nanoestructuras , Óxido de Zinc , Cisplatino , Neoplasias del Colon/tratamiento farmacológico , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Nanopartículas/toxicidad , Oxidación-Reducción , Paclitaxel/farmacología , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/farmacología , Óxido de Zinc/farmacología
8.
ACS Nano ; 16(8): 12049-12060, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35939084

RESUMEN

Organic electrochemical transistors (OECTs) have recently attracted attention due to their high transconductance and low operating voltage, which makes them ideal for a wide range of biosensing applications. Poly-3,4-ethylenedioxythiophene:poly-4-styrenesulfonate (PEDOT:PSS) is a typical material used as the active channel layer in OECTs. Pristine PEDOT:PSS has poor electrical conductivity, and additives are typically introduced to improve its conductivity and OECT performance. However, these additives are mostly either toxic or not proven to be biocompatible. Herein, a biocompatible ionic liquid [MTEOA][MeOSO3] is demonstrated to be an effective additive to enhance the performance of PEDOT:PSS-based OECTs. The influence of [MTEOA][MeOSO3] on the conductivity, morphology, and redox process of PEDOT:PSS is investigated. The PEDOT:PSS/[MTEOA][MeOSO3]-based OECT exhibits high transconductance (22.3 ± 4.5 mS µm-1), high µC* (the product of mobility µ and volumetric capacitance C*) (283.80 ± 29.66 F cm-1 V-1 s-1), fast response time (∼40.57 µs), and excellent switching cyclical stability. Next, the integration of sodium (Na+) and potassium (K+) ion-selective membranes with the OECTs is demonstrated, enabling selective ion detection in the physiological range. In addition, flexible OECTs are designed for electrocardiography (ECG) signal acquisition. These OECTs have shown robust performance against physical deformation and successfully recorded high-quality ECG signals.


Asunto(s)
Técnicas Biosensibles , Líquidos Iónicos , Poliestirenos , Capacidad Eléctrica , Iones
9.
NanoImpact ; 25: 100379, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35559885

RESUMEN

Nano-enabled, toner-based printing equipment emit nanoparticles during operation. The bioactivity of these nanoparticles as documented in a plethora of published toxicological studies raises concerns about their potential health effects. These include pro-inflammatory effects that can lead to adverse epigenetic alterations and cardiovascular disorders in rats. At the same time, their potential to alter DNA repair pathways at realistic doses remains unclear. In this study, size-fractionated, airborne particles from a printer center in Singapore were sampled and characterized. The PM0.1 size fraction (particles with an aerodynamic diameter less than 100 nm) of printer center particles (PCP) were then administered to human lung adenocarcinoma (Calu-3) or lymphoblastoid (TK6) cells. We evaluated plasma membrane integrity, mitochondrial activity, and intracellular reactive oxygen species (ROS) generation. Moreover, we quantified DNA damage and alterations in the cells' capacity to repair 6 distinct types of DNA lesions. Results show that PCP altered the ability of Calu-3 cells to repair 8oxoG:C lesions and perform nucleotide excision repair, in the absence of acute cytotoxicity or DNA damage. Alterations in DNA repair capacity have been correlated with the risk of various diseases, including cancer, therefore further genotoxicity studies are needed to assess the potential risks of PCP exposure, at both occupational settings and at the end-consumer level.


Asunto(s)
Células Epiteliales , Nanopartículas , Animales , Daño del ADN , Reparación del ADN , Humanos , Nanopartículas/toxicidad , Ratas , Especies Reactivas de Oxígeno/metabolismo
10.
Chemosphere ; 303(Pt 1): 134878, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35569636

RESUMEN

Waste electronic and electrical equipment are complex mixtures of valuable and/or toxic materials, which pose serious challenges in their recycling or disposal, for example, electrical transmission wires insulated in polyvinyl chloride materials. These materials are frequently found contaminated with toxic chemical elements, such as Pb, Hg, Cr, or Cd, and are discarded without decontamination. To resolve this problem, we developed a microwave-assisted extraction process to remove toxic metals from plastic e-waste. We processed diluted (30 wt%) citric acid at 210 °C for 1 h inside a pressurized vessel heated by microwave, and found it was suitable not only for the extraction of the toxic metals (∼100%) but also for a significant plastic recovery (>50 wt%). To predict an optimized process window, the support vector regression machine learning algorithm was applied, which reduced the amount of experimentation required while still giving accurate results. Conditions optimized for the reference sample also led to maximum extraction of toxic metals from real-life extension cord waste. We also report that the recovered plastic's properties remained intact after the extraction.


Asunto(s)
Residuos Electrónicos , Cloruro de Polivinilo , Residuos Electrónicos/análisis , Electrónica , Microondas , Plásticos , Cloruro de Polivinilo/química , Reciclaje/métodos
11.
Chemosphere ; 286(Pt 3): 131869, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34418655

RESUMEN

Improving the efficiencies of organic compound degradations by catalytic materials is a challenging materials research field. In our research, we successfully synthesized cobalt-based polyoxometalates (CoV-POMs) via a simple crystallization-driven self-assembly method. The incorporation of the newly synthesized CoV-POMs into peroxymonosulphate (PMS), forming a mixture, greatly enhancing the catalytic activation for a complete degradation of dye solution. The positive synergic effect between CoV-POMs and PMS was substantiated by a relatively meager degradation of less than 10% in the system without CoV-POMs, in which CoV-POMs played a vital role to activate PMS towards free radicals generation for dye degradation. Methylene blue (MB) and rhodamine B (RB) dyes were completely decolorized under 60 min with the presence of 40 mg/L CoV-POMs and 150 mg/L PMS. The CoV-POMs/PMS system was pH dependance with a lower dye degradation efficiency at elevated pH. The effect of pH was more prominent in RB dye, in which the degradation efficiency dropped drastically from 93.3% to 41.12% with the increase in the solution pH from 7 to 11. The quenching tests suggested that sulfate radicals were the dominant active species involving in the dye degradation reaction. Besides MB and RB dyes, CoV-POMs/PMS system also showed significant activity towards the degradation of phenol red (PR) and methyl orange (MO) dyes. In the biological test, CoV-POMs exhibited non-toxic behavior towards normal cells that reduced safety concern for the large-scale wastewater treatment application. In addition, the testing divulged the anticancer property of CoV-POMs with more than 35 % of A549 lung adenocarcinoma and MDA-MB-231 breast adenocarcinoma were killed with 250 mg/L CoV-POMs. The selective lethality of CoV-POMs towards cancer cells was found to be caused by different extents of cellular apoptosis. In overall, the synthesized bifunctional CoV-POMs manifested superior activities in the examined applications, specifically dye degradation and anticancer.


Asunto(s)
Colorantes , Compuestos de Tungsteno , Catálisis , Cobalto
12.
Sci Total Environ ; 807(Pt 3): 151085, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34749966

RESUMEN

Reuse of electronic wastes is a critical aspect for a more sustainable circular economy as it provides the simplest and most direct route to extend the lifespan of non-renewable resources. Herein, the distinctive surface and micro topographical features of computer electronic-plastic (E-plastic) scraps were unconventionally repurposed as a substrate material to guide the growth and differentiation of human adipose-derived mesenchymal stem cells (ADSCs). Specifically, the E-plastics were scavenged from discarded computer components such as light diffuser plate (polyacrylates), prismatic sheet (polyethylene terephthalate), and keyboards (acrylonitrile butadiene styrene) were cleaned, sterilized, and systematically characterized to determine the identity of the plastics, chemical constituents, surface features, and leaching characteristics. Multiparametric analysis revealed that all the E-plastics could preserve stem-cell phenotype and maintain cell growth over 2 weeks, rivalling the performance of commercial tissue-culture treated plates as cell culture plastics. Interestingly, compared to commercial tissue-culture treated plastics and in a competitive adipogenic and osteogenic differentiation environment, ADSCs cultured on the keyboard and light diffuser plastics favoured bone cells formation while the grating-like microstructures of the prismatic sheet promoted fat cells differentiation via the process of contact guidance. Our findings point to the real possibility of utilizing discarded computer plastics as a "waste-to-resource" material to programme stem cell fate without further processing nor biochemical modification, thus providing an innovative second-life option for E-plastics from personal computers.


Asunto(s)
Osteogénesis , Plásticos , Diferenciación Celular , Computadores , Electrónica , Humanos , Células Madre
13.
Chemosphere ; 287(Pt 2): 132128, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34509015

RESUMEN

The increasing amount of e-waste plastics needs to be disposed of properly, and removing the brominated flame retardants contained in them can effectively reduce their negative impact on the environment. In the present work, TBBPA-bis-(2,3-dibromopropyl ether) (TBBPA-DBP), a novel brominated flame retardant, was extracted by ultrasonic-assisted solvothermal extraction process. Response Surface Methodology (RSM) achieved by machine learning (support vector regression, SVR) was employed to estimate the optimum extraction conditions (extraction time, extraction temperature, liquid to solid ratio) in methanol or ethanol solvent. The predicted optimum conditions of TBBPA-DBP were 96 min, 131 mL g-1, 65 °C, in MeOH, and 120 min, 152 mL g-1, 67 °C in EtOH. And the validity of predicted conditions was verified.


Asunto(s)
Éter , Retardadores de Llama , Éteres , Aprendizaje Automático , Polímeros
14.
Front Cell Dev Biol ; 9: 735298, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869319

RESUMEN

Focal adhesions (FAs) are specialized structures that enable cells to sense their extracellular matrix rigidity and transmit these signals to the interior of the cells, bringing about actin cytoskeleton reorganization, FA maturation, and cell migration. It is known that cells migrate towards regions of higher substrate rigidity, a phenomenon known as durotaxis. However, the underlying molecular mechanism of durotaxis and how different proteins in the FA are involved remain unclear. Zyxin is a component of the FA that has been implicated in connecting the actin cytoskeleton to the FA. We have found that knocking down zyxin impaired NIH3T3 fibroblast's ability to sense and respond to changes in extracellular matrix in terms of their FA sizes, cell traction stress magnitudes and F-actin organization. Cell migration speed of zyxin knockdown fibroblasts was also independent of the underlying substrate rigidity, unlike wild type fibroblasts which migrated fastest at an intermediate substrate rigidity of 14 kPa. Wild type fibroblasts exhibited durotaxis by migrating toward regions of increasing substrate rigidity on polyacrylamide gels with substrate rigidity gradient, while zyxin knockdown fibroblasts did not exhibit durotaxis. Therefore, we propose zyxin as an essential protein that is required for rigidity sensing and durotaxis through modulating FA sizes, cell traction stress and F-actin organization.

15.
Acta Biomater ; 136: 111-123, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34551327

RESUMEN

A short bioinspired octapeptide, GV8, can self-assemble under mild conditions into biodegradable supramolecular physical hydrogels with high storage modulus and good biocompatibility. GV8 hydrogels can encapsulate both single or multiple macromolecular protein-based therapeutics in a simple one-pot formulation manner, making it a promising candidate to address challenges faced by existing synthetic polymer or peptide hydrogels with complex gelation and drug-encapsulation processes. Alongside its versatility, the hydrogel exhibits concentration-dependent storage modulus and controlled drug-release action. We demonstrate that GV8 hydrogels loaded with adipose-derived mesenchymal stem cells (ADMSC) secretome remain mechanically robust, and exhibit promising potential for wound healing applications by preserving secretome activity while maintaining a constant supply of ADMSC secretome to promote epithelial cell migration. Overall, our work highlights the potential of GV8 peptide hydrogel as a versatile and safe carrier for encapsulation and delivery of macromolecular therapeutics. STATEMENT OF SIGNIFICANCE: Supramolecular peptide hydrogels are a popular choice for protein-based macromolecular therapeutics delivery; however, despite the development of abundant hydrogel systems, several challenges limit their adaptability and practical applications. GV8 short peptide hydrogel circumvents these drawbacks and demonstrates the ability to function as a versatile growth factor (GF) encapsulant. It can encapsulate precise concentrations of complex adipose-derived mesenchymal stem cells secretome mixtures with a one-pot formulation approach and perform controlled release of GFs with preserved activity without compromising the self-assembly and mechanical properties of the hydrogel's supramolecular network. The significance of GV8 hydrogel lies in its gelation simplicity and versatility to encapsulate and deliver macromolecular therapeutics, thus representing a promising biomaterial for regenerative medicine applications.


Asunto(s)
Hidrogeles , Secretoma , Preparaciones de Acción Retardada , Péptidos y Proteínas de Señalización Intercelular , Péptidos
16.
Sensors (Basel) ; 21(15)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34372271

RESUMEN

Hyperspectral imaging (HSI) provides additional information compared to regular color imaging, making it valuable in areas such as biomedicine, materials inspection and food safety. However, HSI is challenging because of the large amount of data and long measurement times involved. Compressed sensing (CS) approaches to HSI address this, albeit subject to tradeoffs between image reconstruction accuracy, time and generalizability to different types of scenes. Here, we develop improved CS approaches for HSI, based on parallelized multitrack acquisition of multiple spectra per shot. The multitrack architecture can be paired up with either of the two compatible CS algorithms developed here: (1) a sparse recovery algorithm based on block compressed sensing and (2) an adaptive CS algorithm based on sampling in the wavelet domain. As a result, the measurement speed can be drastically increased while maintaining reconstruction speed and accuracy. The methods were validated computationally both in noiseless as well as noisy simulated measurements. Multitrack adaptive CS has a ∼10 times shorter measurement plus reconstruction time as compared to full sampling HSI without compromising reconstruction accuracy across the sample images tested. Multitrack non-adaptive CS (sparse recovery) is most robust against Poisson noise at the expense of longer reconstruction times.


Asunto(s)
Algoritmos , Imágenes Hiperespectrales , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen
17.
Mater Sci Eng C Mater Biol Appl ; 126: 112104, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34082928

RESUMEN

Despite being a rich source of bioactive compounds, the current exploitation of aquatic biomass is insufficient. Majority of the aquaculture industry side-streams are currently used for low-value purposes such as animal feed or composting material, with low economical returns. To maximize resource reuse and minimize waste generation, valorization efforts should be augmented with the aim to produce high-value products. Herein, we present a novel aquaculture wastes-derived multi-scale osteoconductive hybrid biocomposite that is composed of chemically crosslinked American bullfrog (Rana catesbeiana) skin-derived type I tropocollagen nanofibrils (~22.3 nm) network and functionalized with micronized (~1.6 µm) single-phase hydroxyapatite (HA) from discarded snakehead (Channa micropeltes) fish scales. The bioengineered construct is biocompatible, highly porous (>90%), and exhibits excellent osteoconductive properties, as indicated by robust adhesion and proliferation of human fetal osteoblastic 1.19 cell line (hFOB 1.19). Furthermore, increased expression level of osteo-related ALPL and BGLAP mRNA transcripts, as well as enhanced osteocalcin immunoreactivity and increasing Alizarin red S staining coverage on the hybrid biocomposite was observed over 21 days of culture. Collectively, the devised "waste-to-resource" platform represents a sustainable waste valorization strategy that is amendable for advanced bone repair and regeneration applications.


Asunto(s)
Ríos , Ingeniería de Tejidos , Animales , Acuicultura , Materiales Biocompatibles , Regeneración Ósea , Huesos , Durapatita , Humanos , Andamios del Tejido
18.
Lab Chip ; 21(13): 2511-2523, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34042931

RESUMEN

Extracellular vesicles (EVs) are key mediators of communication among cells, and clinical utilities of EVs-based biomarkers remain limited due to difficulties in isolating EVs from whole blood reliably. We report a novel inertial-based microfluidic platform for direct isolation of nanoscale EVs (exosomes, 50 to 200 nm) and medium-sized EVs (microvesicles, 200 nm to 1 µm) from blood with high efficiency (three-fold increase in EV yield compared to ultracentrifugation). In a pilot clinical study of healthy (n = 5) and type 2 diabetes mellitus (T2DM, n = 9) subjects, we detected higher EV levels in T2DM patients (P < 0.05), and identified a subset of "high-risk" T2DM subjects with abnormally high (∼10-fold to 50-fold) amounts of platelet (CD41a+) or leukocyte-derived (CD45+) EVs. Our in vitro endothelial cell assay further revealed that EVs from "high-risk" T2DM subjects induced significantly higher vascular inflammation (ICAM-1 expression) (P < 0.05) as compared to healthy and non-"high-risk" T2DM subjects, reflecting a pro-inflammatory phenotype. Overall, the EV isolation tool is scalable, and requires less manual labour, cost and processing time. This enables further development of EV-based diagnostics, whereby a combined immunological and functional phenotyping strategy can potentially be used for rapid vascular risk stratification in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Exosomas , Vesículas Extracelulares , Biomarcadores , Células Endoteliales , Humanos
19.
Lab Chip ; 21(12): 2359-2371, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33978037

RESUMEN

Mechanistic understanding of atherosclerosis is largely hampered by the lack of a suitable in vitro human arterial model that recapitulates the arterial wall structure, and the interplay between different cell types and the surrounding extracellular matrix (ECM). This work introduces a novel microfluidic endothelial cell (EC)-smooth muscle cell (SMC) 3D co-culture platform that replicates the structural and biological aspects of the human arterial wall for modeling early atherosclerosis. Using a modified surface tension-based ECM patterning method, we established a well-defined intima-media-like structure, and identified an ECM composition (collagen I and Matrigel mixture) that retains the SMCs in a quiescent and aligned state, characteristic of a healthy artery. Endothelial stimulation with cytokines (IL-1ß and TNFα) and oxidized low-density lipoprotein (oxLDL) was performed on-chip to study various early atherogenic events including endothelial inflammation (ICAM-1 expression), EC/SMC oxLDL uptake, SMC migration, and monocyte-EC adhesion. As a proof-of-concept for drug screening applications, we demonstrated the atheroprotective effects of vitamin D (1,25(OH)2D3) and metformin in mitigating cytokine-induced monocyte-EC adhesion and SMC migration. Overall, the developed arterial wall model facilitates quantitative and multi-factorial studies of EC and SMC phenotype in an atherogenic environment, and can be readily used as a platform technology to reconstitute multi-layered ECM tissue biointerfaces.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Arterias , Movimiento Celular , Células Cultivadas , Humanos , Inflamación , Dispositivos Laboratorio en un Chip , Miocitos del Músculo Liso
20.
J Mater Chem B ; 9(35): 7229-7237, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34031686

RESUMEN

Two-dimensional (2D) nanomaterials (NM) have emerged as promising platforms for antibacterial applications. However, the inherent "flatness" of 2D NM often limits the loading of antimicrobial components needed for synergistic bactericidal actions. Here, inspired by the highly ornamented siliceous frustules of diatoms, we prepared 2D ultrathin (<20 nm) and rigid "nanofrustule" plates via the out-of-plane growth of cetyltrimethylammonium bromide (CTAB) directed silica mesostructures on the surfaces of 2D graphene oxide nanosheets. The nanofrustules were characterized by the presence of mesoporous channels with a pore size of 3 nm and a high specific surface area of 674 m2 g-1. S-nitrosothiol-modification on the silica surfaces enables the development of a novel anti-infective nitric oxide (NO) releasing NO-nanofrustule system. The cage-like mesoporous silica architecture enabled a controlled and sustainable release of NO from the NO-nanofrustules under physiological conditions. The NO-nanofrustules displayed broad antibacterial effects against Staphylococcus aureus and Escherichia coli with a minimum inhibitory concentration of 250 µg ml-1. Mechanistic studies revealed that the antibacterial property of NO-nanofrustules was attained via a unique "capture-and-release" mode-of-action. The first step entailed the capture of the bacteria by the NO-nanofrustules to form micro-aggregates. This was followed by the release of high levels of NO to the captured bacteria to elicit a potent anti-infective effect. In combination with the lack of cytotoxicity in human dermal cells, the 2D hybrid NO-nanofrustules may be utilized to combat wound infections in clinical settings.


Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Escherichia coli/efectos de los fármacos , Nanoestructuras/química , Óxido Nítrico/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Relación Dosis-Respuesta a Droga , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Óxido Nítrico/síntesis química , Óxido Nítrico/química , Tamaño de la Partícula , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...