Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biosci Bioeng ; 120(2): 210-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25622768

RESUMEN

Mouse embryonic fibroblasts (MEFs) are commonly used as feeder cells for the generation of human induced pluripotent stem cells (hiPSCs). However, medical applications of cell derivatives of hiPSCs generated with a MEF feeder system run the risk of having xeno-factor contamination due to long-term cell culturing under an animal factor-containing environment. We developed a new method for the derivation of human fibroblast-like cells (FLCs) from a previously established hiPSC line in an FLC differentiation medium. The method was based on direct differentiation of hiPSCs seeded on Matrigel followed by expansion of differentiating cells on gelatin. Using inactivated FLCs as feeder layers, primary human foreskin fibroblasts were successfully reprogrammed into a state of pluripotency by Oct4, Sox2 Klf4, and c-Myc (OSKM) transcription factor genes, with a reprogramming efficiency under an optimized condition superior to that obtained on MEF feeder layers. Furthermore, the FLCs were more effective in supporting the growth of human pluripotent stem cells. The pluripotency and differentiation capability of the cells cultured on FLC feeder layers were well retained. Our results suggest that FLCs are a safe alternative to MEFs for hiPSC generation and expansion, especially in the clinical settings wherein hiPSC derivatives will be used for medical treatment.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Nutrientes/citología , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , Animales , Proliferación Celular , Separación Celular , Células Cultivadas , Reprogramación Celular , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/citología , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/genética
2.
Adv Drug Deliv Rev ; 81: 117-27, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24859534

RESUMEN

Widely observed dysregulation of microRNAs (miRNAs) in human cancer has led to substantial speculation regarding possible functions of these short, non-coding RNAs in cancer development and manipulation of miRNA expression to treat cancer. To achieve miRNA loss-of-function, miRNA sponge technology has been developed to use plasmid or viral vectors for intracellular expression of tandemly arrayed, bulged miRNA binding sites complementary to a miRNA target to saturate its ability to regulate natural mRNAs. A strong viral promoter can be used in miRNA sponge vectors to generate high-level expression of the competitive inhibitor transcripts for either transient or long-term inhibition of miRNA function. Taking the advantage of sharing a common seed sequence by members of a miRNA family, this technology is especially useful in knocking down the expression of a family of miRNAs, providing a powerful means for simultaneous inhibition of multiple miRNAs of interest with a single inhibitor. Knockdown of overexpressed oncogenic miRNAs with the technology can be a rational therapeutic strategy for cancer, whereas inhibition of tumor-suppressive miRNAs by the sponges will be useful in deciphering functions of miRNAs in oncogenesis. Herein, we discuss the design of miRNA sponge expression vectors and the use of the vectors to gain better understanding of miRNA's roles in cancer biology and as an alternative tool for anticancer gene therapy.


Asunto(s)
MicroARNs/genética , Neoplasias/genética , ARN Mensajero/metabolismo , Animales , Sitios de Unión , Técnicas de Silenciamiento del Gen , Vectores Genéticos/administración & dosificación , Humanos , Neoplasias/terapia , Plásmidos , Regiones Promotoras Genéticas/genética
3.
Mol Ther Methods Clin Dev ; 1: 14050, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26015987

RESUMEN

Virus-derived gene transfer vectors have been successfully employed to express the transcription activator-like effector nucleases (TALENs) in mammalian cells. Since the DNA-binding domains of TALENs consist of the variable di-residue (RVD)-containing tandem repeat modules and virus genome with repeated sequences is susceptible to genetic recombination, we investigated several factors that might affect TALEN cleavage efficiency of baculoviral vectors. Using a TALEN system designed to target the AAVS1 locus, we observed increased sequence instability of the TALE repeat arrays when a higher multiplicity of infection (MOI) of recombinant viruses was used to produce the baculoviral vectors. We also detected more deleterious mutations in the TALE DNA-binding domains when both left and right TALEN arms were placed into a single expression cassette as compared to the viruses containing one arm only. The DNA sequence changes in the domains included deletion, addition, substitution, and DNA strand exchange between the left and right TALEN arms. Based on these observations, we have developed a protocol using a low MOI to produce baculoviral vectors expressing TALEN left and right arms separately. Cotransduction of the viruses produced by this optimal protocol provided an improved TALEN cleavage efficiency and enabled effective site-specific transgene integration in human cells.

4.
Stem Cells Transl Med ; 2(12): 935-45, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24167318

RESUMEN

Integrative gene transfer using retroviruses to express reprogramming factors displays high efficiency in generating induced pluripotent stem cells (iPSCs), but the value of the method is limited because of the concern over mutagenesis associated with random insertion of transgenes. Site-specific integration into a preselected locus by engineered zinc-finger nuclease (ZFN) technology provides a potential way to overcome the problem. Here, we report the successful reprogramming of human fibroblasts into a state of pluripotency by baculoviral transduction-mediated, site-specific integration of OKSM (Oct3/4, Klf4, Sox2, and c-myc) transcription factor genes into the AAVS1 locus in human chromosome 19. Two nonintegrative baculoviral vectors were used for cotransduction, one expressing ZFNs and another as a donor vector encoding the four transcription factors. iPSC colonies were obtained at a high efficiency of 12% (the mean value of eight individual experiments). All characterized iPSC clones carried the transgenic cassette only at the ZFN-specified AAVS1 locus. We further demonstrated that when the donor cassette was flanked by heterospecific loxP sequences, the reprogramming genes in iPSCs could be replaced by another transgene using a baculoviral vector-based Cre recombinase-mediated cassette exchange system, thereby producing iPSCs free of exogenous reprogramming factors. Although the use of nonintegrating methods to generate iPSCs is rapidly becoming a standard approach, methods based on site-specific integration of reprogramming factor genes as reported here hold the potential for efficient generation of genetically amenable iPSCs suitable for future gene therapy applications.


Asunto(s)
Baculoviridae/genética , Reprogramación Celular , Endonucleasas/metabolismo , Fibroblastos/metabolismo , Vectores Genéticos , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción/metabolismo , Transducción Genética , Dedos de Zinc , Diferenciación Celular , Línea Celular , Cromosomas Humanos Par 19 , Endonucleasas/genética , Regulación del Desarrollo de la Expresión Génica , Genotipo , Humanos , Integrasas/genética , Integrasas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética , Transfección
5.
J Gene Med ; 15(10): 384-95, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24105820

RESUMEN

BACKGROUND: The AAVS1 locus is viewed as a 'safe harbor' for transgene insertion into human genome. In the present study, we report a new method for AAVS1 targeting in human-induced pluripotent stem cells (hiPSCs). METHODS: We have developed two baculoviral transduction systems: one to deliver zinc finger nuclease (ZFN) and a DNA donor template for site-specific gene insertion and another to mediate Cre recombinase-mediated cassette exchange system to replace the inserted transgene with a new transgene. RESULTS: Our ZFN system provided the targeted integration efficiency of a Neo-EGFP cassette of 93.8% in G418-selected, stable hiPSC colonies. Southern blotting analysis of 20 AASV1 targeted colonies revealed no random integration events. Among 24 colonies examined for mono- or biallelic AASV1 targeting, 25% of them were biallelically modified. The selected hiPSCs displayed persistent enhanced green fluorescent protein expression and continued the expression of stem cell pluripotency markers. The hiPSCs maintained the ability to differentiate into three germ lineages in derived embryoid bodies and transgene expression was retained in the differentiated cells. After pre-including the loxP-docking sites into the Neo-EGFP cassette, we demonstrated that a baculovirus-Cre/loxP system could be used to facilitate the replacement of the Neo-EGFP cassette with another transgene cassette at the AAVS1 locus. CONCLUSIONS: Given high targeting efficiency, stability in expression of inserted transgene and flexibility in transgene exchange, the approach reported in the present study holds potential for generating genetically-modified human pluripotent stem cells suitable for developmental biology research, drug development, regenerative medicine and gene therapy.


Asunto(s)
Baculoviridae/genética , Endonucleasas/genética , Expresión Génica , Vectores Genéticos/genética , Células Madre Pluripotentes Inducidas/metabolismo , Transgenes , Dedos de Zinc/genética , Endonucleasas/metabolismo , Orden Génico , Genes Reporteros , Sitios Genéticos , Recombinación Homóloga , Humanos , Mutagénesis Insercional
6.
Nucleic Acids Res ; 41(19): e180, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23945944

RESUMEN

Safety and reliability of transgene integration in human genome continue to pose challenges for stem cell-based gene therapy. Here, we report a baculovirus-transcription activator-like effector nuclease system for AAVS1 locus-directed homologous recombination in human induced pluripotent stem cells (iPSCs). This viral system, when optimized in human U87 cells, provided a targeted integration efficiency of 95.21% in incorporating a Neo-eGFP cassette and was able to mediate integration of DNA insert up to 13.5 kb. In iPSCs, targeted integration with persistent transgene expression was achieved without compromising genomic stability. The modified iPSCs continued to express stem cell pluripotency markers and maintained the ability to differentiate into three germ lineages in derived embryoid bodies. Using a baculovirus-Cre/LoxP system in the iPSCs, the Neo-eGFP cassette at the AAVS1 locus could be replaced by a Hygro-mCherry cassette, demonstrating the feasibility of cassette exchange. Moreover, as assessed by measuring γ-H2AX expression levels, genome toxicity associated with chromosomal double-strand breaks was not detectable after transduction with moderate doses of baculoviral vectors expressing transcription activator-like effector nucleases. Given high targeted integration efficiency, flexibility in transgene exchange and low genome toxicity, our baculoviral transduction-based approach offers great potential and attractive option for precise genetic manipulation in human pluripotent stem cells.


Asunto(s)
Baculoviridae/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Marcación de Gen/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Transducción Genética , Transgenes , Línea Celular Tumoral , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Vectores Genéticos , Células HEK293 , Humanos , Integrasas/metabolismo , Mutación , Proteínas Recombinantes de Fusión/metabolismo
7.
J Neurochem ; 126(3): 318-30, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23406356

RESUMEN

The breakthrough in derivation of human-induced pluripotent stem cells (hiPSCs) provides an approach that may help overcome ethical and allergenic challenges posed in numerous medical applications involving human cells, including neural stem/progenitor cells (NSCs). Considering the great potential of NSCs in targeted cancer gene therapy, we investigated in this study the tumor tropism of hiPSC-derived NSCs and attempted to enhance the tropism by manipulation of biological activities of proteins that are involved in regulating the migration of NSCs toward cancer cells. We first demonstrated that hiPSC-NSCs displayed tropism for both glioblastoma cells and breast cancer cells in vitro and in vivo. We then compared gene expression profiles between migratory and non-migratory hiPSC-NSCs toward these cancer cells and observed that the gene encoding neuronal nitric oxide synthase (nNOS) was down-regulated in migratory hiPSC-NSCs. Using nNOS inhibitors and nNOS siRNAs, we demonstrated that this protein is a relevant regulator in controlling migration of hiPSC-NSCs toward cancer cells, and that inhibition of its activity or down-regulation of its expression can sensitize poorly migratory NSCs and be used to improve their tumor tropism. These findings suggest a novel application of nNOS inhibitors in neural stem cell-mediated cancer therapy.


Asunto(s)
Movimiento Celular/fisiología , Neoplasias , Células-Madre Neurales/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Línea Celular Tumoral , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Desnudos , Células-Madre Neurales/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
8.
J Clin Invest ; 122(11): 4059-76, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23093778

RESUMEN

In the human brain, microRNAs (miRNAs) from the microRNA-376 (miR-376) cluster undergo programmed "seed" sequence modifications by adenosine-to-inosine (A-to-I) editing. Emerging evidence suggests a link between impaired A-to-I editing and cancer, particularly in high-grade gliomas. We hypothesized that disruption of A-to-I editing alters expression of genes regulating glioma tumor phenotypes. By sequencing the miR-376 cluster, we show that the overall miRNA editing frequencies were reduced in human gliomas. Specifically in high-grade gliomas, miR-376a* accumulated entirely in an unedited form. Clinically, a significant correlation was found between accumulation of unedited miR-376a* and the extent of invasive tumor spread as measured by magnetic resonance imaging of patient brains. Using both in vitro and orthotopic xenograft mouse models, we demonstrated that the unedited miR-376a* promoted glioma cell migration and invasion, while the edited miR-376a* suppressed these features. The effects of the unedited miR-376a* were mediated by its sequence-dependent ability to target RAP2A and concomitant inability to target AMFR. Thus, the tumor-dependent introduction of a single base difference in the miR-376a* sequence dramatically alters the selection of its target genes and redirects its function from inhibiting to promoting glioma cell invasion. These findings uncover a new mechanism of miRNA deregulation and identify unedited miR-376a* as a potential therapeutic target in glioblastoma cells.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , MicroARNs/metabolismo , Edición de ARN , ARN Neoplásico/metabolismo , Adenosina/genética , Adenosina/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Femenino , Glioblastoma/genética , Glioblastoma/patología , Humanos , Inosina/genética , Inosina/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Invasividad Neoplásica , Trasplante de Neoplasias , ARN Neoplásico/genética , Análisis de Secuencia de ARN , Trasplante Heterólogo
9.
Stem Cells ; 30(5): 1021-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22311724

RESUMEN

Human pluripotent stem cells can serve as an accessible and reliable source for the generation of functional human cells for medical therapies. In this study, we used a conventional lentiviral transduction method to derive human-induced pluripotent stem (iPS) cells from primary human fibroblasts and then generated neural stem cells (NSCs) from the iPS cells. Using a dual-color whole-body imaging technology, we demonstrated that after tail vein injection, these human NSCs displayed a robust migratory capacity outside the central nervous system in both immunodeficient and immunocompetent mice and homed in on established orthotopic 4T1 mouse mammary tumors. To investigate whether the iPS cell-derived NSCs can be used as a cellular delivery vehicle for cancer gene therapy, the cells were transduced with a baculoviral vector containing the herpes simplex virus thymidine kinase suicide gene and injected through tail vein into 4T1 tumor-bearing mice. The transduced NSCs were effective in inhibiting the growth of the orthotopic 4T1 breast tumor and the metastatic spread of the cancer cells in the presence of ganciclovir, leading to prolonged survival of the tumor-bearing mice. The use of iPS cell-derived NSCs for cancer gene therapy bypasses the sensitive ethical issue surrounding the use of cells derived from human fetal tissues or human embryonic stem cells. This approach may also help to overcome problems associated with allogeneic transplantation of other types of human NSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas/trasplante , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/terapia , Células-Madre Neurales/trasplante , Trasplante de Células Madre , Animales , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Modelos Animales de Enfermedad , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Especificidad de Órganos , Trasplante Heterólogo
10.
J Gene Med ; 13(1): 26-36, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21259406

RESUMEN

BACKGROUND: Combination therapy is usually desirable for successful cancer treatment, especially in cancers that are resistant to single forms of therapy. METHODS: To achieve an optimal therapeutic effect against glioblastoma, we tested a strategy that combines baculovirus-mediated transfer of the p53 tumor suppressor gene with the use of sodium butyrate, a histone deacetylase inhibitor. This strategy was designed based on the findings that the transduction efficiency of baculovirus in mammalian cells can be markedly enhanced by the addition of histone deacetylase inhibitors and that these inhibitors are effective in inducing cell cycle arrest, differentiation, or apoptosis in tumor cells. RESULTS: We observed a synergistic effect of the combination of the two treatments in provoking apoptosis in glioblastoma cells with mutant p53. In a mouse glioma xenograft model, the tumor inhibitory effect of baculovirus-expressed p53 was significantly enhanced by co-administration of sodium butyrate. CONCLUSIONS: These findings suggest a new approach to treat glioblastoma using baculovirus-mediated gene transfer in combination with administration of histone deacetylase inhibitor.


Asunto(s)
Butiratos/farmacología , Terapia Combinada/métodos , Genes p53 , Terapia Genética , Vectores Genéticos/genética , Animales , Antineoplásicos/farmacología , Apoptosis , Baculoviridae/metabolismo , Ciclo Celular , Línea Celular Tumoral , Femenino , Regulación Viral de la Expresión Génica , Glioma/terapia , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratones , Ratones Endogámicos BALB C , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...