Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 458, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302444

RESUMEN

In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.


Asunto(s)
Neuroglía , Neuronas , Animales , Ratones , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Cerebelo/metabolismo , Ácido Glutámico/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Células de Purkinje/metabolismo , Sinapsis/metabolismo
2.
Genes Cells ; 29(3): 192-206, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38269481

RESUMEN

Low-grade neuroepithelial tumors are major causes of drug-resistant focal epilepsy. Clinically, these tumors are defined as low-grade epilepsy-associated neuroepithelial tumors (LEATs). The BRAF V600E mutation is frequently observed in LEAT and linked to poor seizure outcomes. However, its molecular role in epileptogenicity remains elusive. To understand the molecular mechanism underlying the epileptogenicity in LEAT with the BRAF V600E genetic mutation (BRAF V600E-LEAT), we conducted RNA sequencing (RNA-seq) analysis using surgical specimens of BRAF V600E-LEAT obtained and stored at a single institute. We obtained 21 BRAF V600E-LEAT specimens and 4 control specimens, including 24 from Japanese patients and 1 from a patient of Central Asian origin, along with comprehensive clinical data. We submitted the transcriptome dataset of 21 BRAF V600E-LEAT plus 4 controls, as well as detailed clinical information, to a public database. Preliminary bioinformatics analysis using this dataset identified 2134 differentially expressed genes between BRAF V600E-LEAT and control. Additionally, gene set enrichment analysis provided novel insights into the association between estrogen response-related pathways and the epileptogenicity of BRAF V600E-LEAT patients. Our datasets and findings will contribute toward the understanding of the pathology of epilepsy caused by LEAT and the identification of new therapeutic targets.


Asunto(s)
Neoplasias Encefálicas , Epilepsia , Neoplasias Neuroepiteliales , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Epilepsia/genética , Epilepsia/complicaciones , Neoplasias Neuroepiteliales/genética , Neoplasias Neuroepiteliales/metabolismo , Neoplasias Neuroepiteliales/patología , Transcriptoma , Mutación
4.
EMBO J ; 40(14): e105712, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34057742

RESUMEN

During development, neural progenitors are in proliferative and immature states; however, the molecular machinery that cooperatively controls both states remains elusive. Here, we report that cyclin D1 (CCND1) directly regulates both proliferative and immature states of cerebellar granule cell progenitors (GCPs). CCND1 not only accelerates cell cycle but also upregulates ATOH1 protein, an essential transcription factor that maintains GCPs in an immature state. In cooperation with CDK4, CCND1 directly phosphorylates S309 of ATOH1, which inhibits additional phosphorylation at S328 and consequently prevents S328 phosphorylation-dependent ATOH1 degradation. Additionally, PROX1 downregulates Ccnd1 expression by histone deacetylation of Ccnd1 promoter in GCPs, leading to cell cycle exit and differentiation. Moreover, WNT signaling upregulates PROX1 expression in GCPs. These findings suggest that WNT-PROX1-CCND1-ATOH1 signaling cascade cooperatively controls proliferative and immature states of GCPs. We revealed that the expression and phosphorylation levels of these molecules dynamically change during cerebellar development, which are suggested to determine appropriate differentiation rates from GCPs to GCs at distinct developmental stages. This study contributes to understanding the regulatory mechanism of GCPs as well as neural progenitors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Ciclina D1/metabolismo , Gránulos Citoplasmáticos/metabolismo , Fosforilación/fisiología , Células Madre/metabolismo , Animales , Ciclo Celular/genética , Diferenciación Celular/fisiología , División Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Proteínas Hedgehog/metabolismo , Ratones , Neurogénesis/fisiología , Transducción de Señal/fisiología , Factores de Transcripción
5.
Cancer Discov ; 11(9): 2230-2247, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33879448

RESUMEN

Molecular groups of supratentorial ependymomas comprise tumors with ZFTA-RELA or YAP1-involving fusions and fusion-negative subependymoma. However, occasionally supratentorial ependymomas cannot be readily assigned to any of these groups due to lack of detection of a typical fusion and/or ambiguous DNA methylation-based classification. An unbiased approach with a cohort of unprecedented size revealed distinct methylation clusters composed of tumors with ependymal but also various other histologic features containing alternative translocations that shared ZFTA as a partner gene. Somatic overexpression of ZFTA-associated fusion genes in the developing cerebral cortex is capable of inducing tumor formation in vivo, and cross-species comparative analyses identified GLI2 as a key downstream regulator of tumorigenesis in all tumors. Targeting GLI2 with arsenic trioxide caused extended survival of tumor-bearing animals, indicating a potential therapeutic vulnerability in ZFTA fusion-positive tumors. SIGNIFICANCE: ZFTA-RELA fusions are a hallmark feature of supratentorial ependymoma. We find that ZFTA acts as a partner for alternative transcriptional activators in oncogenic fusions of supratentorial tumors with various histologic characteristics. Establishing representative mouse models, we identify potential therapeutic targets shared by ZFTA fusion-positive tumors, such as GLI2.This article is highlighted in the In This Issue feature, p. 2113.


Asunto(s)
Proteínas de Unión al ADN/genética , Ependimoma/genética , Proteínas/genética , Neoplasias Supratentoriales/genética , Factores de Transcripción/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ependimoma/patología , Genómica , Humanos , Ratones , Neoplasias Supratentoriales/patología
6.
Genes Cells ; 26(3): 136-151, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33501714

RESUMEN

The molecular mechanisms underlying neurodevelopmental disorders (NDDs) remain unclear. We previously identified Down syndrome cell adhesion molecule like 1 (Dscaml1) as a responsible gene for Ihara epileptic rat (IER), a rat model for human NDDs with epilepsy. However, the relationship between NDDs and DSCAML1 in humans is still elusive. In this study, we screened databases of autism spectrum disorders (ASD), intellectual disability (ID)/developmental disorders (DD) and schizophrenia for genomic mutations in human DSCAML1. We then performed in silico analyses to estimate the potential damage to the mutated DSCAML1 proteins and chose three representative mutations (DSCAML1C729R , DSCAML1R1685* and DSCAML1K2108Nfs*37 ), which lacked a cysteine residue in the seventh Ig domain, the intracellular region and the C-terminal PDZ-binding motif, respectively. In overexpression experiments in a cell line, DSCAML1C729R lost its mature N-glycosylation, whereas DSCAML1K2108Nfs*37 was abnormally degraded via proteasome-dependent protein degradation. Furthermore, in primary hippocampal neurons, the ability of the wild-type DSCAML1 to regulate the number of synapses was lost with all mutant proteins. These results provide insight into understanding the roles of the domains in the DSCAML1 protein and further suggest that these mutations cause functional changes, albeit through different mechanisms, that likely affect the pathophysiology of NDDs.


Asunto(s)
Moléculas de Adhesión Celular/genética , Mutación/genética , Trastornos del Neurodesarrollo/genética , Animales , Trastorno del Espectro Autista/genética , Adhesión Celular , Membrana Celular/metabolismo , Espinas Dendríticas/metabolismo , Femenino , Glicosilación , Hipocampo/patología , Humanos , Células L , Masculino , Ratones , Anotación de Secuencia Molecular , Proteínas Mutantes/metabolismo , Proteolisis , Ratas Wistar , Esquizofrenia/genética , Sinapsis/metabolismo
7.
Acta Neuropathol Commun ; 8(1): 206, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33256836

RESUMEN

The Ihara epileptic rat (IER) is a mutant model with limbic-like seizures whose pathology and causative gene remain elusive. In this report, via linkage analysis, we identified Down syndrome cell adhesion molecule-like 1(Dscaml1) as the responsible gene for IER. A single base mutation in Dscaml1 causes abnormal splicing, leading to lack of DSCAML1. IERs have enhanced seizure susceptibility and accelerated kindling establishment. Furthermore, GABAergic neurons are severely reduced in the entorhinal cortex (ECx) of these animals. Voltage-sensitive dye imaging that directly presents the excitation status of brain slices revealed abnormally persistent excitability in IER ECx. This suggests that reduced GABAergic neurons may cause weak sustained entorhinal cortex activations, leading to natural kindling via the perforant path that could cause dentate gyrus hypertrophy and epileptogenesis. Furthermore, we identified a single nucleotide substitution in a human epilepsy that would result in one amino acid change in DSCAML1 (A2105T mutation). The mutant DSCAML1A2105T protein is not presented on the cell surface, losing its homophilic cell adhesion ability. We generated knock-in mice (Dscaml1A2105T) carrying the corresponding mutation and observed reduced GABAergic neurons in the ECx as well as spike-and-wave electrocorticogram. We conclude that DSCAML1 is required for GABAergic neuron placement in the ECx and suppression of seizure susceptibility in rodents. Our findings suggest that mutations in DSCAML1 may affect seizure susceptibility in humans.


Asunto(s)
Moléculas de Adhesión Celular/genética , Corteza Entorrinal/patología , Neuronas GABAérgicas/patología , Convulsiones/genética , Animales , Electroencefalografía , Predisposición Genética a la Enfermedad , Excitación Neurológica/genética , Ratones , Ratas , Ratas Mutantes
8.
Genes Cells ; 25(12): 796-810, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33020978

RESUMEN

A proper balance between proliferation and differentiation of cerebellar granule cell precursors (GCPs) is required for appropriate cerebellar morphogenesis. The Skp1-Cullin1-F-box (SCF) complex, an E3 ubiquitin ligase complex, is involved in polyubiquitination and subsequent degradation of various cell cycle regulators and transcription factors. However, it remains unknown how the SCF complex affects proliferation and differentiation of GCPs. In this study, we found that the scaffold protein Cullin1, and F-box proteins Skp2, ß-TrCP1 and ß-TrCP2 are expressed in the external granule layer (EGL). Knockdown of these molecules in the EGL showed that Cullin1, Skp2 and ß-TrCP2 enhanced differentiation of GCPs. We also observed accumulation of cyclin-dependent kinase inhibitor p27 in GCPs when treated with a Cullin1 inhibitor or proteasome inhibitor. Furthermore, knockdown of p27 rescued enhancement of differentiation by Cullin1 knockdown. These results suggest that the SCF complex is involved in the maintenance of the proliferative state of GCPs through p27 degradation. In addition, inhibition of Cullin1 activity also prevented cell proliferation and enhanced accumulation of p27 in Daoy cells, a cell line derived from the sonic hedgehog subtype of medulloblastoma. This suggested that excess degradation of p27 through the SCF complex causes overproliferation of medulloblastoma cells.


Asunto(s)
Cerebelo/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Cerebelo/metabolismo , Proteínas Cullin/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos ICR , Células-Madre Neurales/citología , Proteínas Quinasas Asociadas a Fase-S/genética , Ubiquitinación
9.
Sci Adv ; 6(36)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917586

RESUMEN

For normal neurogenesis and circuit formation, delamination of differentiating neurons from the proliferative zone must be precisely controlled; however, the regulatory mechanisms underlying cell attachment are poorly understood. Here, we show that Down syndrome cell adhesion molecule (DSCAM) controls neuronal delamination by local suppression of the RapGEF2-Rap1-N-cadherin cascade at the apical endfeet in the dorsal midbrain. Dscam transcripts were expressed in differentiating neurons, and DSCAM protein accumulated at the distal part of the apical endfeet. Cre-loxP-based neuronal labeling revealed that Dscam knockdown impaired endfeet detachment from ventricles. DSCAM associated with RapGEF2 to inactivate Rap1, whose activity is required for membrane localization of N-cadherin. Correspondingly, Dscam knockdown increased N-cadherin localization and ventricular attachment area at the endfeet. Furthermore, excessive endfeet attachment by Dscam knockdown was restored by co-knockdown of RapGEF2 or N-cadherin Our findings shed light on the molecular mechanism that regulates a critical step in early neuronal development.


Asunto(s)
Moléculas de Adhesión Celular , Neuronas , Cadherinas/genética , Moléculas de Adhesión Celular/metabolismo , Mesencéfalo , Neurogénesis , Neuronas/fisiología
10.
Genes Cells ; 24(1): 41-59, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30422377

RESUMEN

The layer structure has been intensively characterized in the developing neocortex and cerebellum based on the various molecular markers. However, as to the developing dorsal midbrain, comprehensive analyses have not been intensely carried out, and thus, the name as well as the definition of each layer is not commonly shared. Here, we redefined the three layers, such as the ventricular zone, intermediate zone and marginal zone, based on various markers for proliferation and differentiation in embryonic dorsal midbrain. Biphasic Ki67 expression defines the classical VZ, in which there is clear separation of the mitotic and interphase zones. Next, we mapped the distribution of immature neurons to the defined layers, based on markers for glutamatergic and GABAergic lineage. Interestingly, Tbr2 and Neurog2 were expressed in the postmitotic neurons. We also report that active (phosphorylated) JNK is a useful marker to demarcate layers during the embryonic stage. Finally, we validated the final arrival layers of the migratory glutamatergic and GABAergic neurons. These results form a foundation for analyses of brain development, especially in the proliferation and migration of excitatory and inhibitory neurons in the dorsal midbrain.


Asunto(s)
Desarrollo Embrionario , Mesencéfalo/citología , Mesencéfalo/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Proliferación Celular , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones Endogámicos ICR , Mitosis , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción/metabolismo
11.
J Neurosci ; 38(5): 1277-1294, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29317485

RESUMEN

Cerebellar granule cell precursors (GCPs) and granule cells (GCs) represent good models to study neuronal development. Here, we report that the transcription factor myeloid ectopic viral integration site 1 homolog (Meis1) plays pivotal roles in the regulation of mouse GC development. We found that Meis1 is expressed in GC lineage cells and astrocytes in the cerebellum during development. Targeted disruption of the Meis1 gene specifically in the GC lineage resulted in smaller cerebella with disorganized lobules. Knock-down/knock-out (KO) experiments for Meis1 and in vitro assays showed that Meis1 binds to an upstream sequence of Pax6 to enhance its transcription in GCPs/GCs and also suggested that the Meis1-Pax6 cascade regulates morphology of GCPs/GCs during development. In the conditional KO (cKO) cerebella, many Atoh1-positive GCPs were observed ectopically in the inner external granule layer (EGL) and a similar phenomenon was observed in cultured cerebellar slices treated with a bone morphogenic protein (BMP) inhibitor. Furthermore, expression of Smad proteins and Smad phosphorylation were severely reduced in the cKO cerebella and Meis1-knock-down GCPs cerebella. Reduction of phosphorylated Smad was also observed in cerebellar slices electroporated with a Pax6 knock-down vector. Because it is known that BMP signaling induces Atoh1 degradation in GCPs, these findings suggest that the Meis1-Pax6 pathway increases the expression of Smad proteins to upregulate BMP signaling, leading to degradation of Atoh1 in the inner EGL, which contributes to differentiation from GCPs to GCs. Therefore, this work reveals crucial functions of Meis1 in GC development and gives insights into the general understanding of the molecular machinery underlying neural differentiation from neural progenitors.SIGNIFICANCE STATEMENT We report that myeloid ectopic viral integration site 1 homolog (Meis1) plays pivotal roles in the regulation of mouse granule cell (GC) development. Here, we show Meis1 is expressed in GC precursors (GCPs) and GCs during development. Our knock-down and conditional knock-out (cKO) experiments and in vitro assays revealed that Meis1 is required for proper cerebellar structure formation and for Pax6 transcription in GCPs and GCs. The Meis1-Pax6 cascade regulates the morphology of GCs. In the cKO cerebella, Smad proteins and bone morphogenic protein (BMP) signaling are severely reduced and Atoh1-expressing GCPs are ectopically detected in the inner external granule layer. These findings suggest that Meis1 regulates degradation of Atoh1 via BMP signaling, contributing to GC differentiation in the inner EGL, and should provide understanding into GC development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas Morfogenéticas Óseas/biosíntesis , Proteínas Morfogenéticas Óseas/genética , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/fisiología , Factor de Transcripción PAX6/biosíntesis , Factor de Transcripción PAX6/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Animales , Astrocitos/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Gránulos Citoplasmáticos , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Fosforilación , Embarazo , Proteínas Smad/metabolismo
12.
J Cell Biol ; 210(5): 737-51, 2015 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-26323690

RESUMEN

Microtubules (MTs) play critical roles in various cellular events, including cell migration. End-binding proteins (EBs) accumulate at the ends of growing MTs and regulate MT end dynamics by recruiting other plus end-tracking proteins (+TIPs). However, how EBs contribute to MT dynamics through +TIPs remains elusive. We focused on tau-tubulin kinase 2 (TTBK2) as an EB1/3-binding kinase and confirmed that TTBK2 acted as a +TIP. We identified MT-depolymerizing kinesin KIF2A as a novel substrate of TTBK2. TTBK2 phosphorylated KIF2A at S135 in intact cells in an EB1/3-dependent fashion and inactivated its MT-depolymerizing activity in vitro. TTBK2 depletion reduced MT lifetime (facilitated shrinkage and suppressed rescue) and impaired HeLa cell migration, and these phenotypes were partially restored by KIF2A co-depletion. Expression of nonphosphorylatable KIF2A, but not wild-type KIF2A, reduced MT lifetime and slowed down the cell migration. These findings indicate that TTBK2 with EB1/3 phosphorylates KIF2A and antagonizes KIF2A-induced depolymerization at MT plus ends for cell migration.


Asunto(s)
Movimiento Celular/fisiología , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células COS , Línea Celular Tumoral , Movimiento Celular/genética , Chlorocebus aethiops , Células HeLa , Humanos , Cinesinas/genética , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño , Cicatrización de Heridas
13.
Nat Neurosci ; 18(5): 698-707, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25821909

RESUMEN

Disrupted-in-schizophrenia 1 (DISC1) is a susceptibility gene for major psychiatric disorders, including schizophrenia. DISC1 has been implicated in neurodevelopment in relation to scaffolding signal complexes. Here we used proteomic analysis to screen for DISC1 interactors and identified several RNA-binding proteins, such as hematopoietic zinc finger (HZF), that act as components of RNA-transporting granules. HZF participates in the mRNA localization of inositol-1,4,5-trisphosphate receptor type 1 (ITPR1), which plays a key role in synaptic plasticity. DISC1 colocalizes with HZF and ITPR1 mRNA in hippocampal dendrites and directly associates with neuronal mRNAs, including ITPR1 mRNA. The binding potential of DISC1 for ITPR1 mRNA is facilitated by HZF. Studies of Disc1-knockout mice have revealed that DISC1 regulates the dendritic transport of Itpr1 mRNA by directly interacting with its mRNA. The DISC1-mediated mRNA regulation is involved in synaptic plasticity. We show that DISC1 binds ITPR1 mRNA with HZF, thereby regulating its dendritic transport for synaptic plasticity.


Asunto(s)
Hipocampo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Proteínas/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , Regiones no Traducidas 3'/genética , Animales , Transporte Biológico , Gránulos Citoplasmáticos/metabolismo , Dendritas/metabolismo , Dendritas/ultraestructura , Hipocampo/citología , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Interferencia de ARN , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/metabolismo
14.
Cell Rep ; 9(6): 2166-79, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25533347

RESUMEN

Mutations in the Autism susceptibility candidate 2 gene (AUTS2), whose protein is believed to act in neuronal cell nuclei, have been associated with multiple psychiatric illnesses, including autism spectrum disorders, intellectual disability, and schizophrenia. Here we show that cytoplasmic AUTS2 is involved in the regulation of the cytoskeleton and neural development. Immunohistochemistry and fractionation studies show that AUTS2 localizes not only in nuclei, but also in the cytoplasm, including in the growth cones in the developing brain. AUTS2 activates Rac1 to induce lamellipodia but downregulates Cdc42 to suppress filopodia. Our loss-of-function and rescue experiments show that a cytoplasmic AUTS2-Rac1 pathway is involved in cortical neuronal migration and neuritogenesis in the developing brain. These findings suggest that cytoplasmic AUTS2 acts as a regulator of Rho family GTPases to contribute to brain development and give insight into the pathology of human psychiatric disorders with AUTS2 mutations.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular , Neurogénesis , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto , Humanos , Ratones , Ratones Endogámicos ICR , Neuronas/citología , Neuronas/fisiología , Neuropéptidos/metabolismo , Proteínas Nucleares/genética , Seudópodos/metabolismo , Factores de Transcripción , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo
15.
J Neurosci ; 34(36): 12168-81, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25186760

RESUMEN

During brain development, neural progenitor cells proliferate and differentiate into neural precursors. These neural precursors migrate along the radial glial processes and localize at their final destination in the cortex. Numerous reports have revealed that 14-3-3 proteins are involved in many neuronal activities, although their functions in neurogenesis remain unclear. Here, using 14-3-3ε/ζ double knock-out mice, we found that 14-3-3 proteins are important for proliferation and differentiation of neural progenitor cells in the cortex, resulting in neuronal migration defects and seizures. 14-3-3 deficiency resulted in the increase of δ-catenin and the decrease of ß-catenin and αN-catenin. 14-3-3 proteins regulated neuronal differentiation into neurons via direct interactions with phosphorylated δ-catenin to promote F-actin formation through a catenin/Rho GTPase/Limk1/cofilin signaling pathway. Conversely, neuronal migration defects seen in the double knock-out mice were restored by phosphomimic Ndel1 mutants, but not δ-catenin. Our findings provide new evidence that 14-3-3 proteins play important roles in neurogenesis and neuronal migration via the regulation of distinct signaling cascades.


Asunto(s)
Proteínas 14-3-3/metabolismo , Corteza Cerebral/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Proteínas 14-3-3/genética , Actinas/metabolismo , Animales , Cateninas/metabolismo , Movimiento Celular , Proliferación Celular , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiología , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Unión Proteica
16.
J Neurosci ; 34(14): 4786-800, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24695699

RESUMEN

In the cerebellum, the bHLH transcription factors Ptf1a and Atoh1 are expressed in distinct neuroepithelial regions, the ventricular zone (VZ) and the rhombic lip (RL), and are required for producing GABAergic and glutamatergic neurons, respectively. However, it is unclear whether Ptf1a or Atoh1 is sufficient for specifying GABAergic or glutamatergic neuronal fates. To test this, we generated two novel knock-in mouse lines, Ptf1a(Atoh1) and Atoh1(Ptf1a), that are designed to express Atoh1 and Ptf1a ectopically in the VZ and RL, respectively. In Ptf1a(Atoh1) embryos, ectopically Atoh1-expressing VZ cells produced glutamatergic neurons, including granule cells and deep cerebellar nuclei neurons. Correspondingly, in Atoh1(Ptf1a) animals, ectopically Ptf1a-expressing RL cells produced GABAergic populations, such as Purkinje cells and GABAergic interneurons. Consistent results were also obtained from in utero electroporation of Ptf1a or Atoh1 into embryonic cerebella, suggesting that Ptf1a and Atoh1 are essential and sufficient for GABAergic versus glutamatergic specification in the neuroepithelium. Furthermore, birthdating analyses with BrdU in the knock-in mice or with electroporation studies showed that ectopically produced fate-changed neuronal types were generated at temporal schedules closely simulating those of the wild-type RL and VZ, suggesting that the VZ and RL share common temporal information. Observations of knock-in brains as well as electroporated brains revealed that Ptf1a and Atoh1 mutually negatively regulate their expression, probably contributing to formation of non-overlapping neuroepithelial domains. These findings suggest that Ptf1a and Atoh1 specify spatial identities of cerebellar neuron progenitors in the neuroepithelium, leading to appropriate production of GABAergic and glutamatergic neurons, respectively.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cerebelo/citología , Ácido Glutámico/metabolismo , Células-Madre Neurales/fisiología , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Cerebelo/embriología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Antígeno Ki-67/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Factores de Transcripción/genética
17.
Nat Commun ; 5: 3337, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24535035

RESUMEN

In the cerebellum, all GABAergic neurons are generated from the Ptf1a-expressing ventricular zone (Ptf1a domain). However, the machinery to produce different types of GABAergic neurons remains elusive. Here we show temporal regulation of distinct GABAergic neuron progenitors in the cerebellum. Within the Ptf1a domain at early stages, we find two subpopulations; dorsally and ventrally located progenitors that express Olig2 and Gsx1, respectively. Lineage tracing reveals the former are exclusively Purkinje cell progenitors (PCPs) and the latter Pax2-positive interneuron progenitors (PIPs). As development proceeds, PCPs gradually become PIPs starting from ventral to dorsal. In gain- and loss-of-function mutants for Gsx1 and Olig1/2, we observe abnormal transitioning from PCPs to PIPs at inappropriate developmental stages. Our findings suggest that the temporal identity transition of cerebellar GABAergic neuron progenitors from PCPs to PIPs is negatively regulated by Olig2 and positively by Gsx1, and contributes to understanding temporal control of neuronal progenitor identities.


Asunto(s)
Cerebelo/citología , Neuronas GABAérgicas/citología , Interneuronas/citología , Células de Purkinje/citología , Células Madre/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Cerebelo/metabolismo , Neuronas GABAérgicas/metabolismo , Inmunohistoquímica , Interneuronas/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Células de Purkinje/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo
18.
Synapse ; 64(12): 948-53, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20815037

RESUMEN

Recent research in the etiology of schizophrenia revealed that there may be some neurodevelopmental failures such as neuronal network incompetence in the brain of this disease, and neurotransmitters cannot function accurately or adequately. But, it is unknown precisely what kinds of deficit in neurotransmission may be existed histopathologically. We investigated the expression of vesicle monoamine transporter 2 (VMAT2), which has a significant role in neurotransmission, in the hippocampal formation of the animal model of schizophrenia, 14-3-3 epsilon hetero knockout (KO) mouse, using an immunohistochemical staining technique to clarify the neuronal abnormalities in the model animal. As a result, the expression of VMAT2 was increased significantly in the hippocampal formation of 14-3-3 epsilon hetero KO mice compared to that of the wild-type littermates. In conclusion, these findings might be related the pathophysiology of this disease includes a monoaminergic transmission abnormality, based on the investigation in a genetically-modified mouse as schizophrenic model.


Asunto(s)
Monoaminas Biogénicas/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Proteínas 14-3-3/genética , Animales , Axones/metabolismo , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados
19.
Neurosci Lett ; 470(2): 134-8, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20045719

RESUMEN

Dystrobrevin binding protein-1 gene (DTNBP1), which encodes dysbindin protein, has been identified as a schizophrenia susceptibility gene. Dysbindin has been shown to contribute to the regulation of exocytosis and formation of synaptic vesicles. Although hypofrontality in schizophrenia underlies its pathophysiology, the molecular function of dysbindin in synaptic neurotransmission remains unclear. In the present study, we investigated depolarization-evoked dopamine (DA) and serotonin (5-HT) release in the prefrontal cortex (PFC) of sandy (sdy) mice, which have a deletion mutation in the gene encoding DTNBP1. In vivo microdialysis analysis revealed that extracellular DA levels in the PFC of wild-type mice were increased by 60mM KCl stimulation, and the KCl-evoked DA release was significantly decreased in sdy mice compared with wild-type mice. Extracellular 5-HT levels in the PFC of wild-type mice were also increased by 60mM KCl stimulation. The KCl-evoked 5-HT release did not differ between wild-type and sdy mice. There was no difference in basal levels of DA and 5-HT before the stimulation between two groups. Behavioral sensitization after repeated methamphetamine (METH) treatment was significantly reduced in sdy mice compared with wild-type mice whereas no difference was observed in METH-induced hyperlocomotion between two groups. These results suggest that dysbindin may have a role in the regulation of depolarization-evoked DA release in the PFC and in the development of behavioral sensitization induced by repeated METH treatment.


Asunto(s)
Proteínas Portadoras/metabolismo , Dopamina/metabolismo , Corteza Prefrontal/metabolismo , Animales , Proteínas Portadoras/genética , Cateterismo , Fármacos del Sistema Nervioso Central/farmacología , Dopaminérgicos/farmacología , Disbindina , Proteínas Asociadas a la Distrofina , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Metanfetamina/farmacología , Ratones , Ratones Endogámicos DBA , Microdiálisis , Actividad Motora/efectos de los fármacos , Cloruro de Potasio/farmacología , Corteza Prefrontal/efectos de los fármacos , Eliminación de Secuencia , Serotonina/metabolismo
20.
Neuron ; 63(6): 774-87, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-19778507

RESUMEN

Disrupted-In-Schizophrenia 1 (DISC1), a susceptibility gene for major psychiatric disorders, regulates neuronal migration and differentiation during mammalian brain development. Although roles for DISC1 in postnatal neurogenesis in the dentate gyrus (DG) have recently emerged, it is not known how DISC1 and its interacting proteins govern the migration, positioning, and differentiation of dentate granule cells (DGCs). Here, we report that DISC1 interacts with the actin-binding protein girdin to regulate axonal development. DGCs in girdin-deficient neonatal mice exhibit deficits in axonal sprouting in the cornu ammonis 3 region of the hippocampus. Girdin deficiency, RNA interference-mediated knockdown, and inhibition of the DISC1/girdin interaction lead to overextended migration and mispositioning of the DGCs resulting in profound cytoarchitectural disorganization of the DG. These findings identify girdin as an intrinsic factor in postnatal development of the DG and provide insights into the critical role of the DISC1/girdin interaction in postnatal neurogenesis in the DG.


Asunto(s)
Giro Dentado/embriología , Giro Dentado/crecimiento & desarrollo , Proteínas de Microfilamentos/metabolismo , Neurogénesis/fisiología , Proteínas de Transporte Vesicular/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Diferenciación Celular/genética , Movimiento Celular/genética , Células Cultivadas , Chlorocebus aethiops , Giro Dentado/citología , Estimulación Eléctrica/métodos , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Conos de Crecimiento/fisiología , Humanos , Inmunoprecipitación/métodos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/deficiencia , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/fisiología , Técnicas de Placa-Clamp , Unión Proteica , Estructura Terciaria de Proteína/fisiología , Interferencia de ARN/fisiología , Ratas , Transfección/métodos , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA