Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Macro Lett ; 7(2): 213-217, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35610895

RESUMEN

Nickel complexes bearing bidentate alkylphophine-phenolate ligands were synthesized and applied to the polymerization of propylene and the copolymerization of propylene and polar monomers. Therein, the use of bulky alkyl substituents on the phosphorus atom was crucial for the formation of highly regioregular polypropylenes. Theoretical calculations suggested that the 1,2-insertion of propylene is favored over the 2,1-insertion in these nickel-catalyzed (co)polymerization reactions. The substituent at the ortho position relative to the oxido group greatly influences the polymerization activity, the molecular weight, and stereoregularity of the polypropylenes. This method delivers moderately isotactic ([mm] ≤ 68%) crystalline polypropylenes. The present system represents the first example for a nickel-catalyzed regiocontrolled copolymerization of propylene and polar monomers such as but-3-en-1-ol, but-3-en-1-yl acetate, and tert-butyl allylcarbamate.

2.
ACS Macro Lett ; 7(3): 305-311, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35632905

RESUMEN

A series of palladium complexes bearing a bisphosphine monoxide with a methylene linker, that is, [κ2-P,O-(R12P)CH2P(O)R22]PdMe(2,6-lutidine)][BArF4] (Pd/BPMO), were synthesized and evaluated as catalysts for the homopolymerization of ethylene and the copolymerization of ethylene and polar monomers. X-ray crystallographic analyses revealed that these Pd/BPMO complexes exhibit significantly narrower bite angles and longer Pd-O bonds than Pd/BPMO complexes bearing a phenylene linker, while maintaining almost constant Pd-P bond lengths. Among the complexes synthesized, menthyl-substituted complex 3f (R1 = (1R,2S,5R)-2-isopropyl-5-methylcyclohexan-1-yl; R2 = Me) showed the best catalytic performance in the homo- and copolymerization in terms of molecular weight and polymerization activity. Meanwhile, complex 3e (R1 = t-Bu; R2 = Me) exhibited a markedly higher incorporation of comonomers in the copolymerization of ethylene and allyl acetate (≤12.0 mol %) or methyl methacrylate (≤0.6 mol %). The catalytic system represents one of the first examples of late-transition-metal complexes bearing an alkylene-bridged bidentate ligand that afford high-molecular-weight copolymers from the copolymerization of ethylene and polar monomers.

3.
Angew Chem Int Ed Engl ; 55(26): 7505-9, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27161896

RESUMEN

Moderately isospecific homopolymerization of propylene and the copolymerization of propylene and polar monomers have been achieved with palladium complexes bearing a phosphine-sulfonate ligand. Optimization of substituents on the phosphorus atom of the ligand revealed that the presence of bulky alkyl groups (e.g. menthyl) is crucial for the generation of high-molecular-weight polypropylenes (Mw ≈10(4) ), and the substituent at the ortho-position relative to the sulfonate group influences the molecular weight and isotactic regularity of the obtained polypropylenes. Statistical analysis suggested that the introduction of substituents at the ortho-position relative to the sulfonate group favors enantiomorphic site control over chain end control in the chain propagation step. The triad isotacticity could be increased to mm=0.55-0.59, with formation of crystalline polar polypropylenes, as supported by the presence of melting points and sharp peaks in the corresponding X-ray diffraction patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA