Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(3): 4025-4035, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38093077

RESUMEN

Zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) are metal-organic frameworks (MOFs) that have gained significant attention in various fields due to their unique properties. They have potential applications in drug delivery, gas storage, and catalysis. However, their increasing use raises concerns about their potential environmental impact. Our study evaluates the effects of ≈90 nm ZIF-8 NPs in two planktonic species, the green microalga Nannochloropsis oculata and the brine shrimp Artemia salina. After synthesis and characterization (SEM, EDS, BET, and DLS) of nanoporous ZIF-8 NPs, a growth inhibition test on microalgae (72 h) and acute immobilization test on instar I and II of Artemia nauplii (48 h) were conducted following, OECD 201 and ISO/TS 20787, respectively. The toxicity of ZIF-8 NPs to both species was time- and concentration-dependent. The 72-h median inhibitory concentration (IC50) of ZIF-8 NPs for N. oculata based on average specific growth rate and yield were calculated as 79.71 ± 8.55 mg L-1 and 51.73 ± 5.16 mg L-1, respectively. Also, the 48-h median effective concentration (EC50) of ZIF-8 NPs on immobilization rate of instar I and II were calculated as 175.09 ± 4.14 mg L-1 and 4.69 ± 0.34 mg L-1, respectively. Moreover, the swimming type of non-immobilized animals was affected by ZIF-8 NPs. These findings provide a good insight into the toxicity of nanoparticulate ZIF-8 to saltwater planktons and also confirm that instar II Artemia is more sensitive than instar I. This study demonstrated that ZIF-8 NPs, despite all their advantages, could have toxic effects on aquatic organisms. More studies are required to assess their potential environmental impact and develop strategies to mitigate their toxicity.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Zeolitas , Animales , Artemia , Plancton , Zeolitas/farmacología , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidad
2.
Sci Total Environ ; 842: 156807, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35750161

RESUMEN

This study evaluated the bioconcentration metrics, organ-specific distribution, and trophic consequences of silver nanoparticles along a Dunaliella salina-Artemia salina-Poecilia reticulata food chain. To this end, accumulation, tissue-specific distribution, bioconcentration and biomagnification factors, and trophic toxicity of AgNPs were quantitatively investigated along di- and tri-trophic food chains. Overall, silver accumulation increased markedly in intestine and liver tissues, carcass, and embryos of guppy fish with rising exposure concentrations and reducing trophic levels. Following trophic and waterborne exposure, AgNPs illustrated a regular tendency in following order: intestine > liver > embryos > carcass. BCF displayed values of 826, 131, and ≈ 1000 for microalgae, brine shrimp, and guppy fish, respectively. Moreover, BMF showed values <1.00 for 48-h post-hatched nauplii and guppy fish received AgNPs-exposed phytoplankton, yet >1.00 for the liver and whole body of guppy fish treated with AgNPs-exposed nauplii through algae and water, indicating that AgNPs could be biomagnified from the second to third trophic level, but not from the first to second or third levels. Furthermore, the waterborne and trophic exposure of AgNPs considerably induced oxidative stress and reproductive toxicity. Together, this study demonstrated that AgNPs could be biomagnified across trophic chain and consequently cause trophic toxicity.


Asunto(s)
Nanopartículas del Metal , Contaminantes Químicos del Agua , Animales , Artemia , Peces , Cadena Alimentaria , Nanopartículas del Metal/toxicidad , Fitoplancton , Plata/toxicidad , Contaminantes Químicos del Agua/toxicidad , Zooplancton
3.
J Trace Elem Med Biol ; 66: 126758, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33857859

RESUMEN

BACKGROUND: Selenium has a major role in male reproduction and antioxidative mechanisms. Although deficiency of this element can result in damages to the body's organs, this metalloid can induce deleterious effects in organisms by causing oxidative stress. This study assessed the spermatotoxicity of selenium nanoparticles (SeNPs) in goldfish (Carassius auratus) based on genotoxicity, antioxidant status, sperm quality, and histopathology. METHODS: The fish with an average weight of 70 g (n = 288) were divided into four experimental groups (three replicates) and fed three times a day with SeNPs at different levels of 0, 0.1, 0.5, and 1 mg kg diet for 30 and 60 days. RESULTS: After 30 and 60 days of feeding trial, compared to the control group, spermatocrit percentage markedly decreased at 1 mg kg SeNPs on day 30 as well as at 0.5 and 1 mg kg on day 60 (p < 0.05). Computer-assisted sperm analysis parameters especially VCL, VSL, and VAP decreased in response to SeNPs (p < 0.05). Percentage of fast speed progressive sperm cells was highest in fish fed with 0.1 mg kg SeNPs following the dietary experiment and significantly reduced in a SeNPs dose-dependent manner (p < 0.05). In addition, the levels of Malondialdehyde and Glutathione peroxidase were significantly elevated in seminal plasma of all SeNPs-treated groups (p < 0.05). On day 60, DNA damage of sperm was greatly increased at 1 mg kg SeNPs (p < 0.05). Moreover, the highest percentage of spermatocyte and spermatid were observed at the highest dose of SeNPs while the highest percentage of spermatozoa was recorded at the lowest and moderate SeNPs doses. CONCLUSION: These findings suggested that non-optimal doses of SeNPs could reduce sperm quality, induce oxidative stress, and DNA damage in sperm, and disrupt testis development.


Asunto(s)
Antioxidantes/toxicidad , Nanopartículas/química , Selenio/toxicidad , Espermatozoides/efectos de los fármacos , Animales , Antioxidantes/química , Relación Dosis-Respuesta a Droga , Carpa Dorada , Masculino , Selenio/química , Motilidad Espermática/efectos de los fármacos
4.
Mar Pollut Bull ; 163: 111942, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33422829

RESUMEN

Southern parts of the Caspian Sea have been faced with a diverse range of oil pollutants. Therefore, this study was designed to evaluate the effects of relevant environmental concentrations of benzo[α]pyrene (BαP) on liver, gill, and blood of Caspian White fish. To this end, 150 fingerling fish (6.5 ± 0.8 g) were exposed to under, near and over environmental concentrations of BαP (i.e. 50, 100, and 200 ppb, respectively) and two control groups for 21 days. Following exposure to BαP, generally, DNA damage increased in the liver and gill cells as well as the frequency of micro- and bi-nucleated erythrocytes in a time and concentration-dependent pattern. In addition, the liver and gill tissues displayed several histopathological lesions. Together, the findings are warning the health status of the Caspian Sea due to an ever-increasing concentration of BαP through using Caspian White fish as an ecological model.


Asunto(s)
Branquias , Contaminantes Químicos del Agua , Animales , Daño del ADN , Branquias/química , Hígado/química , Pirenos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
Environ Res ; 194: 110611, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33358875

RESUMEN

No to less effort has been made to assess the toxicity of silver nanoparticles (AgNPs) to lipid composition in biological systems and also to discover a mitigating agent against their oxidative stress. Hence, this research evaluated the antioxidant capability of quercetin (Qu) against silver nanoparticles (AgNPs) toxicity towards the lipid contents of ovarian, nervous, and hepatic systems as well as skeletal muscles. To this end, zebrafish (n = 180) were assigned into four experimental dietary groups: negative and positive controls, without Qu supplementation; Qu-200, 200 mg Qu per kg diet; and Qu-400, 400 mg Qu per kg diet. At the end of the feeding trial (40 days), the experimental groups, except the negative control, were exposed to sublethal concentration of AgNPs (0.15 mg L-1) for 96 h. As to the liver tissue of the positive and Qu-200 treatments, total polyunsaturated fatty acids (∑PUFA) decreased 3 times, as well as total high unsaturated fatty acids (∑HUFA) reduced about 30% and 50%, respectively. However, the brain ∑HUFA, predominated by DHA, enhanced in Qu-400 treatment. Interestingly, ∑MUFA, ∑PUFA, and ∑HUFA increased in the muscle of all treated groups, especially Qu-200 and Qu-400. The oocyte ∑MUFA content increased in the positive and Qu-200 treatments, whereas ∑HUFA reduced about 25%, 25%, and 20%, respectively, in the positive, Qu-200, and Qu-400 groups. Generally, the findings suggest that unsaturated acyl chains, particularly HUFAs, in the liver tissue and oocyte cell are highly susceptible to peroxidation or degeneration by AgNPs. More broadly, in the context of ecotoxicological risk assessment, the alteration in HUFAs and PUFAs of the liver and oocyte could impact on maternal and offspring health and consequently alter long-term population dynamics of aquatic animals.


Asunto(s)
Nanopartículas del Metal , Pez Cebra , Animales , Encéfalo , Dieta , Suplementos Dietéticos , Ácidos Grasos , Hígado , Nanopartículas del Metal/toxicidad , Músculos , Oocitos , Quercetina/farmacología , Plata/toxicidad
6.
Environ Res ; 185: 109477, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32276170

RESUMEN

The present study assessed the protective effect of chitosan-nanoencapsulated quercetin (Qu-ChiNPs) against oxidative stress caused by silver nanoparticles (AgNPs). To this end, the transcription of prime genes regulating hepatic Keap1-Nrf2 pathway as well as downstream antioxidant enzymes were monitored prior to and after oxidative stress by AgNPs. Zebrafish (Danio rerio; n = 225) was assigned into five experimental groups based on feeding with diets supplemented with different additives as follows: negative and positive control groups, without additive; ChiNPs, 400 mg nanochitosan per kg diet; Quercetin, 400 mg free quercetin per kg diet; and Qu-ChiNPs, 400 mg Qu-ChiNPs per kg diet. At the end of the feeding trial (40 days), the experimental groups, except the negative control, were exposed to sublethal concentration of AgNPs (0.15 mg L-1) for 96h. Before exposure to AgNPs, free quercetin-treated diet significantly upregulated Keap1, Nrf2, Cat, SOD, GPx, and GST genes in the liver tissue when compared with the control diet, whereas Qu-Chi.NPs downregulated their transcription to the lowest levels. After exposure to AgNPs, all genes exhibited different responses in the AgNPs-exposed groups. The highest transcription of Nrf2, Cat, SOD, GPx, and GST was observed in the positive group, with being upregulated about 8, 10, 8, 8, and 7 times, respectively, when compared to the respective ones in the negative control. However, Keap1 showed a reverse response with being transcripted 12 times lower. The quercetin treatments, especially Qu-Chi.NPs, significantly reduced the transcription of Nrf2, Cat, SOD, GPx, and GST genes, yet enhanced Keap1 expression. Qu-Chi.NPs reduced the expression of Nrf2, SOD, Cat, GPx, and GST about 11, 10, 15, 10, and 10 times, respectively, yet increased that of Keap1 about 12 times. Taken together, nanoencapsulation can improve the antioxidant efficacy of quercetin against AgNPs toxicity and might reduce involvement of the cellular antioxidant system through tuning redox status. More broadly, it would be interesting to assess the effects of Qu-Chi.NPs against other metallic and organic oxidative stressors or pollutants.


Asunto(s)
Nanopartículas del Metal , Pez Cebra , Animales , Antioxidantes , Dieta/veterinaria , Proteína 1 Asociada A ECH Tipo Kelch , Nanopartículas del Metal/toxicidad , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Quercetina/farmacología , Plata/toxicidad , Pez Cebra/genética , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...