Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(39): 27461-27475, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37711376

RESUMEN

Thermoplastic olefin (TPO) is the principal material for automotive instrument panels and is prone to fracture especially under heavy airbag deployment, which can prevent the airbag deploying properly. Thus, polyolefin elastomer (POE) was introduced to improve impact properties and fracture resistance. Fundamental methods to characterise TPO with the addition of POE are proposed. The influence of POE content on the mechanical properties was examined. With increasing POE content, the storage modulus and glass transition temperature values decreased, and the damping increased due to the POE increasing the polymer chain mobility. The tensile modulus, ultimate tensile strength and yield stress decreased with increasing POE content, while the ductility of the blends significantly increased. Furthermore, the POE reduced hardness and increased energy absorption during impact. In the fracture analysis, the addition of POE content increased the fracture resistance by increasing the crack energy and decreasing the resistance to crack initiation. Fractographic analysis showed how stretched microfibrils in the blends increase the fracture resistance. These results gave a significant indication of the utility of the elastomer in improving some mechanical properties and impact toughness of the interior automotive material to resist an undesired failure or over-fracture in airbag deployment.

2.
Sci Adv ; 9(11): eadf4051, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36921055

RESUMEN

Artificial dry adhesives have exhibited great potential in the field of robotics. However, there is still a wide gap between bioinspired adhesives and living tissues, especially regarding the surface adaptability and switching ability of attachment/detachment. Here, we propose a sensing-triggered stiffness-tunable smart adhesive material, combining the functions of muscle tissues and sensing nerves rather than traditional biomimetic adhesive strategy that only focuses on structural geometry. Authorized by real-time perception of the interface contact state, conformal contact, shape locking, and active releasing are achieved by adjusting the stiffness based on the magnetorheological effect. Because of the fast switching of the magnetic field, a millisecond-level attachment/detachment response is successfully achieved, breaking the bottleneck of adhesive materials for high-speed manipulation. The innovative design can be applied to any toe's surface structure, opening up a previously unknown avenue for the development of adhesive materials.

3.
Appl Spectrosc ; 71(2): 258-266, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28181467

RESUMEN

Composites modified with nanoparticles are of interest to many researchers due to the large surface-area-to-volume ratio of nano-scale fillers. One challenge with nanoscale materials that has received significant attention is the dispersion of nanoparticles in a matrix material. A random distribution of particles often ensures good material properties, especially as it relates to the thermal and mechanical performance of composites. Typical methods to quantify particle dispersion in a matrix material include optical, scanning electron, and transmission electron microscopy. These utilize images and a variety of analysis methods to describe particle dispersion. This work describes how photoluminescent spectroscopy can serve as an additional technique capable of quickly and comprehensively quantifying particle dispersion of photoluminescent particles in a hybrid composite. High resolution 2D photoluminescent maps were conducted on the front and back surfaces of a hybrid carbon fiber reinforced polymer containing varying contents of alumina nanoparticles. The photoluminescent maps were analyzed for the intensity of the alumina R1 fluorescence peak, and therefore yielded alumina particle dispersion based on changes in intensity from the embedded nanoparticles. A method for quantifying particle sedimentation is also proposed that compares the photoluminescent data of the front and back surfaces of each hybrid composite and assigns a single numerical value to the degree of sedimentation in each specimen. The methods described in this work have the potential to aid in the manufacturing processes of hybrid composites by providing on-site quality control options, capable of quickly and noninvasively providing feedback on nanoparticle dispersion and sedimentation.

4.
J Mater Sci ; 52(12): 7323-7344, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32226133

RESUMEN

A well-dispersed phase of exfoliated graphene oxide (GO) nanosheets was initially prepared in water. This was concentrated by centrifugation and was mixed with a liquid epoxy resin. The remaining water was removed by evaporation, leaving a GO dispersion in epoxy resin. A stoichiometric amount of an anhydride curing agent was added to this epoxy-resin mixture containing the GO nanosheets, which was then cured at 90 °C for 1 h followed by 160 °C for 2 h. A second thermal treatment step of 200 °C for 30 min was then undertaken to reduce further the GO in situ in the epoxy nanocomposite. An examination of the morphology of such nanocomposites containing reduced graphene oxide (rGO) revealed that a very good dispersion of rGO was achieved throughout the epoxy polymer. Various thermal and mechanical properties of the epoxy nanocomposites were measured, and the most noteworthy finding was a remarkable increase in the thermal conductivity when relatively very low contents of rGO were present. For example, a value of 0.25 W/mK was measured at 30 °C for the nanocomposite with merely 0.06 weight percentage (wt%) of rGO present, which represents an increase of ~40% compared with that of the unmodified epoxy polymer. This value represents one of the largest increases in the thermal conductivity per wt% of added rGO yet reported. These observations have been attributed to the excellent dispersion of rGO achieved in these nanocomposites made via this facile production method. The present results show that it is now possible to tune the properties of an epoxy polymer with a simple and viable method of GO addition.

5.
Appl Nanosci ; 6(7): 1015-1022, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-32355586

RESUMEN

Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix. In the present work, we report the thermal and mechanical properties of reduced graphene oxide/epoxy composites prepared via a facile, scalable and commercially viable method. Electron micrographs of the composites demonstrate that the reduced graphene oxide (rGO) is well dispersed throughout the composite. Although no improvements in glass transition temperature, tensile strength and thermal stability in air of the composites were observed, good improvements in thermal conductivity (about 36 %), tensile and storage moduli (more than 13 %) were recorded with the addition of 2 wt% of rGO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...