Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-14, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38109103

RESUMEN

Cancer is one of the leading causes of death in the U.S., and tumorous cancers such as cervical, lung, breast, and ovarian cancers are the most common types. APOBEC3B is a nonessential cytidine deaminase found in humans and theorized to defend against viral infection. However, overexpression of APOBEC3B is linked to cancer in humans, which makes APOBEC3B a potential cancer treatment target through competitive inhibition for several tumorous cancers. Computational studies can help reveal a small molecule inhibitor using high-throughput virtual screening of millions of candidates with relatively little cost. This study aims to narrow the field of potential APOBEC3B inhibition candidates for future in vitro assays and provide an effective scaffold for drug design studies. Another goal of this project is to provide critical amino acid targets in the active site for future drug design studies. This study simulated 7.8 million drug candidates using high-throughput virtual screening and further processed the top scoring 241 molecules from AutoDock Vina, DOCK 6, and de novo design. Using virtual screening, de novo design, and molecular dynamics simulations, a competitive inhibitor candidate was discovered with an average binding free energy score of -46.03 kcal/mol, more than 10 kcal/mol better than the substrate control (dCMP). These results indicate that this molecule (or a structural derivative) may be an effective inhibitor of APOBEC3B and prevent host genome mutagenesis resulting from protein overexpression. Another important finding is the confirmation of essential amino acid targets, such as Tyr250 and Gln213 within the active site of APOBEC3B. Therefore, study used novel computational methods to provide a theoretical scaffold for future drug design studies that may prove useful as a treatment for epithelial cancers.Communicated by Ramaswamy H. Sarma.

2.
Angew Chem Int Ed Engl ; 60(20): 11127-11132, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33644941

RESUMEN

The manginoids are a unique collection of bioactive natural products whose structures fuse an oxa-bridged spirocyclohexanedione with a heavily substituted trans-hydrindane framework. Herein, we show that such architectures can be accessed through a strategy combining a challenging pinacol coupling and bicycle-forming etherification with several additional chemo- and regioselective reactions. The success of these key events proved to be highly substrate and condition specific, affording insights for their application to other targets. As a result, not only has a 19-step total synthesis of manginoid A been achieved, but a potential roadmap to access other members of the family and related natural products has also been identified.

3.
Nat Commun ; 12(1): 743, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531496

RESUMEN

The pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to expand. Papain-like protease (PLpro) is one of two SARS-CoV-2 proteases potentially targetable with antivirals. PLpro is an attractive target because it plays an essential role in cleavage and maturation of viral polyproteins, assembly of the replicase-transcriptase complex, and disruption of host responses. We report a substantive body of structural, biochemical, and virus replication studies that identify several inhibitors of the SARS-CoV-2 enzyme. We determined the high resolution structure of wild-type PLpro, the active site C111S mutant, and their complexes with inhibitors. This collection of structures details inhibitors recognition and interactions providing fundamental molecular and mechanistic insight into PLpro. All compounds inhibit the peptidase activity of PLpro in vitro, some block SARS-CoV-2 replication in cell culture assays. These findings will accelerate structure-based drug design efforts targeting PLpro to identify high-affinity inhibitors of clinical value.


Asunto(s)
Papaína/metabolismo , Péptido Hidrolasas/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Antivirales/farmacología , Humanos , Mutación , Poliproteínas/metabolismo , Especificidad por Sustrato , Replicación Viral/efectos de los fármacos
4.
J Chem Inf Model ; 61(1): 324-334, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33378183

RESUMEN

Recent experiments indicate that the C-Jun amino-terminal kinase-interacting protein 1 (JIP1) binds to and activates the c-Jun N-terminal kinase (JNK) protein. JNK is an integral part of cell apoptosis, and misregulation of this process is a causative factor in diseases such as Alzheimer's disease (AD), obesity, and cancer. It has also been shown that JIP1 may increase the phosphorylation of tau by facilitating the interaction between the tau protein and JNK, which could also be a causative factor in AD. Very little is known about the structure and dynamics of JIP1; however, the amino acid composition of the first 350 residues suggests that it contains an intrinsically disordered region. Molecular dynamics (MD) simulations using AMBER 14 were used to study the structure and dynamics of a functionally active JIP1 10mer fragment to better understand the solution behavior of the fragment. Two microseconds of unbiased MD was performed on the JIP1 10mer fragment in 10 different seeds for a total of 20 µs of simulation time, and from this, seven structurally stable conformations of the 10mer fragment were identified via classical clustering. The 10mer ensemble was also used to build a Markov state model (MSM) that identified four metastable states that encompassed six of the seven conformational families identified by classical dimensional reduction. Based on this MSM, conformational interconversions between the four states occur via two dominant pathways with probability fluxes of 55 and 44% for each individual pathway. Transitions between the initial and final states occur with mean first passage times of 31 (forward) and 16 (reverse) µs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Enfermedad de Alzheimer , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Fosforilación
5.
Chem Sci ; 11(40): 10939-10944, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34094343

RESUMEN

The recent natural product isolates spiroviolene and spirograterpene A are two relatively non-functionalized linear triquinane terpenes with a large number of structural homologies. Nevertheless, three significant areas of structural disparity exist based on their original assignments, one of which implies a key stereochemical divergence early in their respective biosyntheses. Herein, using two known bicyclic ketone intermediates, a core Pd-catalyzed Heck cyclization sequence, and several chemoselective transformations, we describe concise total syntheses of both natural product targets and propose that the structure of spiroviolene should be reassigned. As a result, these natural products possess greater homology than previously anticipated.

6.
Chem Sci ; 11(11): 3036-3041, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-34122807

RESUMEN

For decades, the Laurencia family of halogenated C15-acetogenins has served as a valuable testing ground for the prowess of chemical synthesis, particularly as it relates to generating functionalized 8-membered bromoethers. Herein, we show that a readily modified and predictable approach that generates such rings and an array of attendant stereocenters via a bromenium-induced cyclization/ring-expansion process can be used to synthesize laurendecumallene B and determine the configuration of two of its previously unassigned stereocenters. In particular, this work highlights how the use of the bromenium source BDSB (Et2SBr·SbCl5Br) in non-conventional solvents is essential in generating much of the target's complexity in optimal yields and stereoselectivity. Moreover, the final structural assignment of laurendecumallene B reveals that it has one element of bromine-based chirality that, to the best of our knowledge, is not shared with any other member of the class.

7.
Biochemistry ; 57(34): 5169-5181, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30067338

RESUMEN

ErbB2 signaling pathways are linked to breast cancer formation, growth, and aggression; therefore, understanding the behavior of proteins associated with these pathways as well as regulatory factors that influence ErbB2 function is essential. MEMO1 is a redox active protein that is shown to associate with phosphorylated ErbB2 and mediate cell motility. We have developed a fluorescence polarization assay to probe the interaction between MEMO1 and an ErbB2-derived peptide containing a phosphorylated tyrosine residue. This interaction is shown to be pH-dependent and stronger with longer peptides as would be expected for protein-protein interactions. We have quantitatively mapped the binding interface of MEMO1 to the peptide using the fluorescence polarization assay and molecular dynamics simulations. We have confirmed that phosphorylation of the peptide is essential for binding and through mutagenesis have identified residues that contribute to favorable interactions. Our results highlight the importance of the protein-protein interactions of MEMO1 that complement the oxidase activity. In the future, these studies will provide a method for screening for selective modulators of MEMO1, which will allow for additional biological investigations.


Asunto(s)
Polarización de Fluorescencia , Simulación de Dinámica Molecular , Proteínas de Hierro no Heme/metabolismo , Receptor ErbB-2/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mutagénesis Sitio-Dirigida , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/genética , Fosforilación , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Receptor ErbB-2/química , Receptor ErbB-2/genética
8.
J Mol Graph Model ; 75: 71-79, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28575798

RESUMEN

The human immunodeficiency virus (HIV) infects healthy human cells by binding to the glycoprotein cluster of differentiation 4 receptors on the surface of helper T-cells, along with either of two chemokine receptors, CC chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4). Recently, a pyrazolo-piperdine ligand was synthesized and the corresponding biological data showed good binding to both chemokine receptors, effectively blocking HIV-1 entry. Here, we exhaustively assess the atomistic binding interactions of this compound with both CCR5 and CXCR4, and we find that binding is driven by π-stacking interactions between aromatic rings on the ligand and receptor residues, as well as electrostatic interactions involving the protonated piperidine nitrogen. However, these favorable binding interactions were partially offset by unfavorable desolvation of active site glutamates and aspartates, prompting our proposal of a new, synthetically-accessible derivative designed to increase the electrostatic interactions without compromising the π-stacking features.


Asunto(s)
Diseño de Fármacos , Receptores CCR5/metabolismo , Receptores CXCR4/antagonistas & inhibidores , Secuencia de Aminoácidos , Entropía , VIH-1/metabolismo , Humanos , Enlace de Hidrógeno , Ligandos , Simulación de Dinámica Molecular , Receptores CCR5/química , Receptores CXCR4/química , Electricidad Estática
9.
Proteins ; 85(2): 221-234, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27891669

RESUMEN

Mutations in the amyloid precursor protein (APP) are responsible for the formation of amyloid-ß peptides. These peptides play a role in Alzheimer's and other dementia-related diseases. The cargo binding domain of the kinesin-1 light chain motor protein (KLC1) may be responsible for transporting APP either directly or via interaction with C-jun N-terminal kinase-interacting protein 1 (JIP1). However, to date there has been no direct experimental or computational assessment of such binding at the atomistic level. We used molecular dynamics and free energy estimations to gauge the affinity for the binary complexes of KLC1, APP, and JIP1. We find that all binary complexes (KLC1:APP, KLC1:JIP1, and APP:JIP1) contain conformations with favorable binding free energies. For KLC1:APP the inclusion of approximate entropies reduces the favorability. This is likely due to the flexibility of the 42-residue APP protein. In all cases we analyze atomistic/residue driving forces for favorable interactions. Proteins 2017; 85:221-234. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Precursor de Proteína beta-Amiloide/química , Proteínas Asociadas a Microtúbulos/química , Simulación de Dinámica Molecular , Secuencias de Aminoácidos , Sitios de Unión , Humanos , Cinesinas , Cinética , Simulación del Acoplamiento Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...