Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(8): 4228-4235, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38357880

RESUMEN

Simple synthetic and natural hydrogels can be formulated to have elastic moduli that match biological tissues, leading to their widespread application as model systems for tissue engineering, medical device development, and drug delivery vehicles. However, two different hydrogels having the same elastic modulus but differing in microstructure or nanostructure can exhibit drastically different mechanical responses, including their poroelasticity, lubricity, and load bearing capabilities. Here, we investigate the mechanical response of collagen-1 networks to local and bulk compressive loads. We compare these results to the behavior of polyacrylamide, a fundamentally different class of hydrogel network consisting of flexible polymer chains. We find that the high bending rigidity of collagen fibers, which suppresses entropic bending fluctuations and osmotic pressure, facilitates the bulk compression of collagen networks under infinitesimal applied stress. These results are fundamentally different from the behavior of flexible polymer networks in which the entropic thermal fluctuations of the polymer chains result in an osmotic pressure that must first be overcome before bulk compression can occur. Furthermore, we observe minimal transverse strain during the axial loading of collagen networks, a behavior reminiscent of open-celled cellular solids. Inspired by these results, we applied mechanical models of cellular solids to predict the elastic moduli of the collagen networks and found agreement with the moduli values measured through contact indentation. Collectively, these results suggest that unlike flexible polymer networks that are often considered incompressible, collagen hydrogels behave like rigid porous solids that volumetrically compress and expel water rather than spreading laterally under applied normal loads.


Asunto(s)
Colágeno , Matriz Extracelular , Presión , Módulo de Elasticidad , Colágeno/química , Polímeros , Hidrogeles/química , Estrés Mecánico
2.
J Appl Physiol (1985) ; 117(6): 616-23, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25059239

RESUMEN

Age is known to induce remodeling and stiffening of large-conduit arteries; however, little is known of the effects of age on remodeling and mechanical properties of coronary resistance arteries. We employed a rat model of aging to investigate whether 1) age increases wall thickness and stiffness of coronary resistance arteries, and 2) exercise training reverses putative age-induced increases in wall thickness and stiffness of coronary resistance arteries. Young (4 mo) and old (21 mo) Fischer 344 rats remained sedentary or underwent 10 wk of treadmill exercise training. Coronary resistance arteries were isolated for determination of wall-to-lumen ratio, effective elastic modulus, and active and passive responses to changes in intraluminal pressure. Elastin and collagen content of the vascular wall were assessed histologically. Wall-to-lumen ratio increased with age, but this increase was reversed by exercise training. In contrast, age reduced stiffness, and exercise training increased stiffness in coronary resistance arteries from old rats. Myogenic responsiveness was reduced with age and restored by exercise training. Collagen-to-elastin ratio (C/E) of the wall did not change with age and was reduced with exercise training in arteries from old rats. Thus age induces hypertrophic remodeling of the vessel wall and reduces the stiffness and myogenic function of coronary resistance arteries. Exercise training reduces wall-to-lumen ratio, increases wall stiffness, and restores myogenic function in aged coronary resistance arteries. The restorative effect of exercise training on myogenic function of coronary resistance arteries may be due to both changes in vascular smooth muscle phenotype and expression of extracellular matrix proteins.


Asunto(s)
Envejecimiento/fisiología , Vasos Coronarios/fisiología , Condicionamiento Físico Animal/fisiología , Resistencia Vascular/fisiología , Animales , Colágeno/metabolismo , Vasos Coronarios/metabolismo , Elastina/metabolismo , Técnicas In Vitro , Masculino , Contracción Muscular/fisiología , Nanotecnología , Ratas , Ratas Endogámicas F344 , Rigidez Vascular/fisiología
3.
Front Neurol ; 4: 124, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24062716

RESUMEN

While the signal quality of recording neural electrodes is observed to degrade over time, the degradation mechanisms are complex and less easily observable. Recording microelectrodes failures are attributed to different biological factors such as tissue encapsulation, immune response, and disruption of blood-brain barrier (BBB) and non-biological factors such as strain due to micromotion, insulation delamination, corrosion, and surface roughness on the recording site (1-4). Strain due to brain micromotion is considered to be one of the important abiotic factors contributing to the failure of the neural implants. To reduce the forces exerted by the electrode on the brain, a high compliance 2D serpentine shaped electrode cable was designed, simulated, and measured using polyimide as the substrate material. Serpentine electrode cables were fabricated using MEMS microfabrication techniques, and the prototypes were subjected to load tests to experimentally measure the compliance. The compliance of the serpentine cable was numerically modeled and quantitatively measured to be up to 10 times higher than the compliance of a straight cable of same dimensions and material.

4.
FASEB J ; 27(6): 2282-92, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23457215

RESUMEN

Evidence indicates that cerebral blood flow is both increased and diminished in astronauts on return to Earth. Data from ground-based animal models simulating the effects of microgravity have shown that decrements in cerebral perfusion are associated with enhanced vasoconstriction and structural remodeling of cerebral arteries. Based on these results, the purpose of this study was to test the hypothesis that 13 d of spaceflight [Space Transportation System (STS)-135 shuttle mission] enhances myogenic vasoconstriction, increases medial wall thickness, and elicits no change in the mechanical properties of mouse cerebral arteries. Basilar and posterior communicating arteries (PCAs) were isolated from 9-wk-old female C57BL/6 mice for in vitro vascular and mechanical testing. Contrary to that hypothesized, myogenic vasoconstrictor responses were lower and vascular distensibility greater in arteries from spaceflight group (SF) mice (n=7) relative to ground-based control group (GC) mice (n=12). Basilar artery maximal diameter was greater in SF mice (SF: 236±9 µm and GC: 215±5 µm) with no difference in medial wall thickness (SF: 12.4±1.6 µm; GC: 12.2±1.2 µm). Stiffness of the PCA, as characterized via nanoindentation, was lower in SF mice (SF: 3.4±0.3 N/m; GC: 5.4±0.8 N/m). Collectively, spaceflight-induced reductions in myogenic vasoconstriction and stiffness and increases in maximal diameter of cerebral arteries signify that elevations in brain blood flow may occur during spaceflight. Such changes in cerebral vascular control of perfusion could contribute to increases in intracranial pressure and an associated impairment of visual acuity in astronauts during spaceflight.


Asunto(s)
Arterias Cerebrales/patología , Arterias Cerebrales/fisiopatología , Hipertensión Intracraneal/etiología , Ingravidez/efectos adversos , Animales , Astronautas , Circulación Cerebrovascular/fisiología , Femenino , Suspensión Trasera/efectos adversos , Suspensión Trasera/fisiología , Humanos , Hipertensión Intracraneal/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Vuelo Espacial , Vasoconstricción/fisiología
5.
Nanoscale Res Lett ; 5(8): 1333-9, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20676196

RESUMEN

Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO) substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20-80 nm in diameter, up to 6 µm in length, density <40 nm apart) at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

6.
Nanotechnology ; 21(22): 225703, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20453287

RESUMEN

We report the mechanical characterization of a nanocomposite thin film consisting of CdSe quantum dots (QDs) and the electroluminescent polymer poly[2-methoxy-5-2(2'-ethylhexyloxy-p-phenylenevinylene)] (MEH-PPV). The electrical and optical properties of this nanocomposite have been studied intensely for organic electronics research. However, the mechanical behaviour-which depends on several variables, such as the concentration of QDs, the interfacial surface area, deformation mechanisms, and the mechanical properties of the QDs and polymer-is not well understood. In this paper, thin films of CdSe QDs blended with MEH-PPV are prepared at different QD:polymer ratios. The QDs' surface ligands are removed to promote dispersion and to more realistically mimic QD-polymer devices. QD dispersion is verified using transmission electron microscopy, while the films' morphology and roughness are observed using atomic force microscopy. Finally, quasi-static nanoindentation is used to measure the elastic modulus, hardness, and creep of the films. The incorporation of QDs into the polymer matrix is seen to increase the elastic modulus and hardness by factors of 4 and 5, respectively, both of which scale linearly as a function of QD volume fraction. Furthermore, the QDs have the effect of suppressing the viscoelastic behaviour of the polymer, which is observed by studying the creep under a constant load. These results may have profound implications for future nanocomposite devices, such as increased stiffness, damage resistance, and long-term stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...