Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893342

RESUMEN

The authors of this Comment are longstanding selenium investigators with a total of 200 or more published articles on selenium; the corresponding author (Margaret P [...].


Asunto(s)
COVID-19 , Suplementos Dietéticos , Selenio , Humanos , COVID-19/prevención & control , COVID-19/virología , COVID-19/epidemiología , SARS-CoV-2/efectos de los fármacos
2.
Colloids Surf B Biointerfaces ; 226: 113329, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37156027

RESUMEN

Diethyldithiocarbamate-copper complex (CuET) shows promising anticancer effect; nonetheless, preclinical evaluations of CuET are hindered due to poor solubility. We prepared bovine serum albumin (BSA)-dispersed CuET nanoparticles (CuET-NPs) to overcome the shortcoming. Results from a cell-free redox system demonstrated that CuET-NPs reacted with glutathione, leading to form hydroxyl radical. Glutathione-mediated production of hydroxyl radicals may help explain why CuET selectively kills drug-resistant cancer cells with higher levels of glutathione. CuET-NPs dispersed by autoxidation products of green tea epigallocatechin gallate (EGCG) also reacted with glutathione; however, the autoxidation products eradicated hydroxyl radicals; consequently, such CuET-NPs exhibited largely compromised cytotoxicity, suggesting that hydroxyl radical is a crucial mediator of CuET anticancer activity. In cancer cells, BSA-dispersed CuET-NPs exhibited cytotoxic activities equivalent to CuET and induced protein poly-ubiquitination. Moreover, the reported powerful inhibition of CuET on colony formation and migration of cancer cells could be replicated by CuET-NPs. These similarities demonstrate BSA-dispersed CuET-NPs is identical to CuET. Thus, we advanced to pilot toxicological and pharmacological evaluations. CuET-NPs caused hematologic toxicities in mice and induced protein poly-ubiquitination and apoptosis of cancer cells inoculated in mice at a defined pharmacological dose. Given high interest in CuET and its poor solubility, BSA-dispersed CuET-NPs pave the way for preclinical evaluations.


Asunto(s)
Antineoplásicos , Nanopartículas , Animales , Ratones , Albúmina Sérica Bovina , Radical Hidroxilo , Portadores de Fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral
3.
Antioxidants (Basel) ; 12(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36978807

RESUMEN

Associations between dietary selenium status and the clinical outcome of many viral infections, including SARS-CoV-2, are well established. Multiple independent studies have documented a significant inverse correlation between selenium status and the incidence and mortality of COVID-19. At the molecular level, SARS-CoV-2 infection has been shown to decrease the expression of certain selenoproteins, both in vitro and in COVID-19 patients. Using computational methods, our group previously identified a set of six host proteins that contain potential SARS-CoV-2 main protease (Mpro) cleavage sites. Here we show experimentally that Mpro can cleave four of the six predicted target sites, including those from three selenoproteins: thioredoxin reductase 1 (TXNRD1), selenoprotein F, and selenoprotein P, as well as the rate-limiting enzyme in glutathione synthesis, glutamate-cysteine ligase catalytic subunit (GCLC). Cleavage was assessed by incubating recombinant SARS-CoV-2 Mpro with synthetic peptides spanning the proposed cleavage sites, and analyzing the products via UPLC-MS. Furthermore, upon incubation of a recombinant Sec498Ser mutant of the full TXNRD1 protein with SARS-CoV-2 Mpro, the predicted cleavage was observed, destroying the TXNRD1 C-terminal redox center. Mechanistically, proteolytic knockdown of both TXNRD1 and GCLC is consistent with a viral strategy to inhibit DNA synthesis, conserving the pool of ribonucleotides for increased virion production. Viral infectivity could also be enhanced by GCLC knockdown, given the ability of glutathione to disrupt the structure of the viral spike protein via disulfide bond reduction. These findings shed new light on the importance of dietary factors like selenium and glutathione in COVID-19 prevention and treatment.

4.
Trends Food Sci Technol ; 132: 40-53, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36594074

RESUMEN

Background: COVID-19 due to SARS-CoV-2 infection has had an enormous adverse impact on global public health. As the COVID-19 pandemic evolves, the WHO declared several variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and Omicron. Compared with earlier variants, Omicron, now a dominant lineage, exhibits characteristics of enhanced transmissibility, tropism shift toward the upper respiratory tract, and attenuated disease severity. The robust transmission of Omicron despite attenuated disease severity still poses a great challenge for pandemic control. Under this circumstance, its tropism shift may be utilized for discovering effective preventive approaches. Scope and approach: This review aims to estimate the potential of green tea epigallocatechin gallate (EGCG), the most potent antiviral catechin, in neutralizing SARS-CoV-2 Omicron variant, based on current knowledge concerning EGCG distribution in tissues and Omicron tropism. Key findings and conclusions: EGCG has a low bioavailability. Plasma EGCG levels are in the range of submicromolar concentrations following green tea drinking, or reach at most low µM concentrations after pharmacological intervention. Nonetheless, its levels in the upper respiratory tract could reach concentrations as high as tens or even hundreds of µM following green tea consumption or pharmacological intervention. An approach for delivering sufficiently high concentrations of EGCG in the pharynx has been developed. Convincing data have demonstrated that EGCG at tens to hundreds of µM can dramatically neutralize SARS-CoV-2 and effectively eliminate SARS-CoV-2-induced cytopathic effects and plaque formation. Thus, EGCG, which exhibits hyperaccumulation in the upper respiratory tract, deserves closer investigation as an antiviral in the current global battle against COVID-19, given Omicron's greater tropism toward the upper respiratory tract.

5.
Proc Nutr Soc ; 82(1): 1-12, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35983618

RESUMEN

In this review, the relevance of selenium (Se) to viral disease will be discussed paying particular attention to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19). Se, the active centre in selenoproteins has an ongoing history of reducing the incidence and severity of viral infections. Host Se deficiency increased the virulence of RNA viruses such as influenza A and coxsackievirus B3, the latter of which is implicated in the development of Keshan disease in north-east China. Significant clinical benefits of Se supplementation have been demonstrated in HIV-1, in liver cancer linked to hepatitis B, and in Chinese patients with hantavirus that was successfully treated with oral sodium selenite. China is of particular interest because it has populations that have both the lowest and the highest Se status in the world. We found a significant association between COVID-19 cure rate and background Se status in Chinese cities; the cure rate continued to rise beyond the Se intake required to optimise selenoproteins, suggesting an additional mechanism. Se status was significantly higher in serum samples from surviving than non-surviving COVID-19 patients. As regards mechanism, SARS-CoV-2 may interfere with the human selenoprotein system; selenoproteins are important in scavenging reactive oxygen species, controlling immunity, reducing inflammation, ferroptosis and endoplasmic reticulum (ER) stress. We found that SARS-CoV-2 significantly suppressed mRNA expression of GPX4, of the ER selenoproteins, SELENOF, SELENOM, SELENOK and SELENOS and down-regulated TXNRD3. Based on the available data, both selenoproteins and redox-active Se species (mimicking ebselen, an inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host) could employ their separate mechanisms to attenuate virus-triggered oxidative stress, excessive inflammatory responses and immune-system dysfunction, thus improving the outcome of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Selenio , Virosis , Humanos , Selenio/farmacología , Selenio/uso terapéutico , SARS-CoV-2/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
6.
Food Chem Toxicol ; 153: 112286, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34023458

RESUMEN

Higher selenium status has been shown to improve the clinical outcome of infections caused by a range of evolutionally diverse viruses, including SARS-CoV-2. However, the impact of SARS-CoV-2 on host-cell selenoproteins remains elusive. The present study investigated the influence of SARS-CoV-2 on expression of selenoprotein mRNAs in Vero cells. SARS-CoV-2 triggered an inflammatory response as evidenced by increased IL-6 expression. Of the 25 selenoproteins, SARS-CoV-2 significantly suppressed mRNA expression of ferroptosis-associated GPX4, DNA synthesis-related TXNRD3 and endoplasmic reticulum-resident SELENOF, SELENOK, SELENOM and SELENOS. Computational analysis has predicted an antisense interaction between SARS-CoV-2 and TXNRD3 mRNA, which is translated with high efficiency in the lung. Here, we confirmed the predicted SARS-CoV-2/TXNRD3 antisense interaction in vitro using DNA oligonucleotides, providing a plausible mechanism for the observed mRNA knockdown. Inhibition of TXNRD decreases DNA synthesis which is thereby likely to increase the ribonucleotide pool for RNA synthesis and, accordingly, RNA virus production. The present findings provide evidence for a direct inhibitory effect of SARS-CoV-2 replication on the expression of a specific set of selenoprotein mRNAs, which merits further investigation in the light of established evidence for correlations between dietary selenium status and the outcome of SARS-CoV-2 infection.


Asunto(s)
ADN/biosíntesis , Estrés del Retículo Endoplásmico/fisiología , Ferroptosis/fisiología , ARN Mensajero/metabolismo , SARS-CoV-2/fisiología , Selenoproteínas/metabolismo , Animales , Chlorocebus aethiops , Regulación de la Expresión Génica/fisiología , ARN Mensajero/genética , Selenoproteínas/genética , Células Vero
7.
BBA Adv ; 12021.
Artículo en Inglés | MEDLINE | ID: mdl-34988542

RESUMEN

Selenium status plays a major role in health impacts of various RNA viruses. We previously reported potential antisense interactions between viral mRNAs and host mRNAs encoding isoforms of the antioxidant selenoprotein thioredoxin reductase (TXNRD). Here, we examine possible targeting of selenoprotein mRNAs by Zika virus (ZIKV), because one of the most devastating outcomes of ZIKV infection in neonates, microcephaly, is a key manifestation of Progressive Cerebello-Cerebral Atrophy (PCCA), a genetic disease of impaired selenoprotein synthesis. Potential antisense matches between ZIKV and human selenoprotein mRNAs were identified computationally, the strongest being against human TXNRD1 and selenoprotein P (SELENOP), a selenium carrier protein essential for delivery of selenium to the brain. Computationally, ZIKV has regions of extensive (~30bp) and stable (ΔE < -50kcal/mol) antisense interactions with both TXNRD1 and SELENOP mRNAs. The core ZIKV/SELENOP hybridization was experimentally confirmed at the DNA level by gel shift assay using synthetic oligonucleotides. In HEK293T cells, using Western blot probes for SELENOP and TXNRD1, ZIKV infection knocked down SELENOP protein expression almost completely, by 99% (p<0.005), and TXNRD1 by ~90% (p<0.05). In contrast, by RT-qPCR, there was no evidence of significant changes in SELENOP and TXNRD1 mRNA levels after ZIKV infection, suggesting that their knockdown at the protein level is not primarily a result of mRNA degradation. These results suggest that knockdown of SELENOP and TXNRD1 by ZIKV in fetal brain, possibly antisense-mediated, could mimic SELENOP knockout, thereby contributing to neuronal cell death and symptoms similar to the genetic disease PCCA, including brain atrophy and microcephaly.

8.
Front Nutr ; 7: 143, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32984400

RESUMEN

Glutathione peroxidases (GPX), a family of antioxidant selenoenzymes, functionally link selenium and glutathione, which both show correlations with clinical outcomes in COVID-19. Thus, it is highly significant that cytosolic GPX1 has been shown to interact with an inactive C145A mutant of Mpro, the main cysteine protease of SARS-CoV-2, but not with catalytically active wild-type Mpro. This seemingly anomalous result is what might be expected if GPX1 is a substrate for the active protease, leading to its fragmentation. We show that the GPX1 active site sequence is substantially similar to a known Mpro cleavage site, and is identified as a potential cysteine protease site by the Procleave algorithm. Proteolytic knockdown of GPX1 is highly consistent with previously documented effects of recombinant SARS-CoV Mpro in transfected cells, including increased reactive oxygen species and NF-κB activation. Because NF-κB in turn activates many pro-inflammatory cytokines, this mechanism could contribute to increased inflammation and cytokine storms observed in COVID-19. Using web-based protease cleavage site prediction tools, we show that Mpro may be targeting not only GPX1, but several other selenoproteins including SELENOF and thioredoxin reductase 1, as well as glutamate-cysteine ligase, the rate-limiting enzyme for glutathione synthesis. This hypothesized proteolytic knockdown of components of both the thioredoxin and glutaredoxin systems is consistent with a viral strategy to inhibit DNA synthesis, to increase the pool of ribonucleotides for RNA synthesis, thereby enhancing virion production. The resulting "collateral damage" of increased oxidative stress and inflammation would be exacerbated by dietary deficiencies of selenium and glutathione precursors.

9.
Redox Biol ; 37: 101715, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32992282

RESUMEN

Selenium is a trace element essential to human health largely because of its incorporation into selenoproteins that have a wide range of protective functions. Selenium has an ongoing history of reducing the incidence and severity of various viral infections; for example, a German study found selenium status to be significantly higher in serum samples from surviving than non-surviving COVID-19 patients. Furthermore, a significant, positive, linear association was found between the cure rate of Chinese patients with COVID-19 and regional selenium status. Moreover, the cure rate continued to rise beyond the selenium intake required to optimise selenoproteins, suggesting that selenoproteins are probably not the whole story. Nonetheless, the significantly reduced expression of a number of selenoproteins, including those involved in controlling ER stress, along with increased expression of IL-6 in SARS-CoV-2 infected cells in culture suggests a potential link between reduced selenoprotein expression and COVID-19-associated inflammation. In this comprehensive review, we describe the history of selenium in viral infections and then go on to assess the potential benefits of adequate and even supra-nutritional selenium status. We discuss the indispensable function of the selenoproteins in coordinating a successful immune response and follow by reviewing cytokine excess, a key mediator of morbidity and mortality in COVID-19, and its relationship to selenium status. We comment on the fact that the synthetic redox-active selenium compound, ebselen, has been found experimentally to be a strong inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host. That finding suggests that redox-active selenium species formed at high selenium intake might hypothetically inhibit SARS-CoV-2 proteases. We consider the tactics that SARS-CoV-2 could employ to evade an adequate host response by interfering with the human selenoprotein system. Recognition of the myriad mechanisms by which selenium might potentially benefit COVID-19 patients provides a rationale for randomised, controlled trials of selenium supplementation in SARS-CoV-2 infection.


Asunto(s)
COVID-19/inmunología , Inflamación/inmunología , Selenio/inmunología , Selenoproteínas/inmunología , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Azoles/farmacología , Azoles/uso terapéutico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/inmunología , Citocinas/inmunología , Humanos , Inflamación/tratamiento farmacológico , Isoindoles , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Inhibidores de Proteasa Viral/farmacología , Inhibidores de Proteasa Viral/uso terapéutico , Tratamiento Farmacológico de COVID-19
12.
Curr Top Med Chem ; 16(13): 1530-5, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26369818

RESUMEN

Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3' end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation.


Asunto(s)
Ebolavirus/genética , VIH-1/genética , ARN sin Sentido/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN Viral/genética , Selenio/metabolismo , Selenoproteínas/genética , Humanos , Termodinámica
13.
Sci Rep ; 5: 7977, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25613293

RESUMEN

Repetin (RPTN) protein is a member of S100 family and is known to be expressed in the normal epidermis. Here we show that RPTN is ubiquitously expressed in both mouse and human brain, with relatively high levels in choroid plexus, hippocampus and prefrontal cortex. To investigate the expression of RPTN in neuropsychiatric disorders, we determined serum levels of RPTN in patients with schizophrenia (n = 88) or bipolar disorder (n = 34) and in chronic psychostimulant users (n = 91). We also studied its expression in a mouse model of chronic unpredictable mild stress (CUMS). The results showed that serum RPTN levels were significantly diminished in patients with schizophrenia and bipolar disorder or in psychostimulant users, compared with healthy subjects (n = 115) or age-matched controls (n = 92) (p < 0.0001). In CUMS mice, RPTN expression in hippocampus and prefrontal cortex was reduced with progression of the CUMS procedure; the serum RPTN level remained unchanged. Since CUMS is a model for depression and methamphetamine (METH) abuse induced psychosis recapitulates many of the psychotic symptoms of schizophrenia, the results from this study may imply that RPTN plays a potential role in emotional and cognitive processing; its decrease in serum may indicate its involvement in the pathogenesis of schizophrenia and bipolar disorder.


Asunto(s)
Trastorno Bipolar/sangre , Encéfalo/metabolismo , Proteínas S100/sangre , Esquizofrenia/sangre , Adulto , Animales , Encéfalo/patología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Trastornos Relacionados con Sustancias/sangre
14.
Med Hypotheses ; 80(2): 131-3, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23218444

RESUMEN

Chronic hepatitis C virus (HCV) infection is a well-recognized risk factor for hepatocellular carcinoma (HCC). As a co-risk factor, the role of tobacco use in HCV-driven carcinogenesis and relevant underlying mechanisms remain largely unclear. The latest discoveries about HCV replication have shown that HCV RNA hijacks cellular miRNA-122 by forming an Ago2-HCV-miR-122 complex that stabilizes the HCV genome and enhances HCV replication. Our previous work has demonstrated that aqueous tobacco smoke extract (TSE) is a potent activator of HIV replication via TSE-mediated viral protection from oxidative stress and activation of a set of genes that can promote viral replication. Since HCV is, like HIV, an enveloped virus that should be equally susceptible to lipid peroxidation, and since one of the TSE-upregulated genes, the DDX3 helicase, is known to facilitate HCV replication, we hypothesize that (1) tobacco use can similarly enhance HCV viability and replication, and promote HCC progression by up-regulation of DDX3, and (2) by competing for binding with miR-122 as a competing endogenous RNA (ceRNA), HCV replication can liberate miR-122's direct target, oncogenic gene cyclin G1 (CCNG1); furthermore, simultaneous tobacco use can synergistically enhance this competing effect via HCV upregulation. Our hypotheses may lay a foundation for better understanding of carcinogenesis in HCV-driven HCC and the potential role of tobacco as a cofactor. Disrupting the HCV ceRNA effect may provide a new strategy for designing anti HCV/HCC drugs.


Asunto(s)
Carcinoma Hepatocelular/etiología , Hepacivirus/metabolismo , Hepatitis C Crónica/complicaciones , Neoplasias Hepáticas/etiología , MicroARNs/metabolismo , Modelos Biológicos , Tabaquismo/complicaciones , Proteínas Argonautas , Ciclina G1/metabolismo , ARN Helicasas DEAD-box/metabolismo , Hepacivirus/genética , Humanos , Replicación Viral/fisiología
15.
Toxicol Appl Pharmacol ; 265(3): 342-50, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22982619

RESUMEN

Thioredoxin reductase (TrxR) is a target for cancer therapy and the anticancer mechanism of cisplatin involves TrxR inhibition. We hypothesize that the anticancer drug nedaplatin (NDP), an analogue of cisplatin and a second-generation platinum complex, also targets TrxR. Furthermore, we investigate whether the therapeutic efficacy of NDP can be enhanced by simultaneous modulation of 1) TrxR, via NDP, and 2) glutathione (GSH), via the GSH synthesis inhibitor buthionine sulfoximine (BSO). Mice bearing ascitic hepatoma 22 (H22) cells were treated with NDP alone or NDP plus BSO. TrxR activity of H22 cells was inhibited by NDP in a dose-dependent manner. A high correlation between the inhibition of TrxR activity at 6h and the inhibition of ascitic fluid volume at 72h was established (r=0.978, p<0.01). As an adaptive response, the viable ascitic cancer cells after NDP treatment displayed an enlarged cell phenotype, assembled with several-fold more antioxidant enzymes and GSH-predominant non-protein free thiols. This adaptive response was largely eliminated when BSO was co-administered with NDP, leading to the decimation of the H22 cell population without enhancing renal toxicity, since at this dose, NDP did not inhibit renal TrxR activity. In conclusion, the pharmacological effect of NDP involves TrxR inhibition, and the adaptive response of NDP-treated ascitic H22 cells can be efficiently counteracted by BSO. Simultaneous modulation of TrxR and GSH on ascitic H22 cells using NDP plus BSO greatly enhances therapeutic efficacy as compared with the single modulation of TrxR using NDP alone.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Butionina Sulfoximina/farmacología , Glutatión/antagonistas & inhibidores , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Compuestos Organoplatinos/farmacología , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Animales , Ascitis/enzimología , Ascitis/metabolismo , Ascitis/patología , Butionina Sulfoximina/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Glutatión/biosíntesis , Glutatión/metabolismo , Neoplasias Hepáticas Experimentales/enzimología , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones , Compuestos Organoplatinos/administración & dosificación , Distribución Aleatoria , Reductasa de Tiorredoxina-Disulfuro/metabolismo
16.
Int J Nanomedicine ; 7: 1711-21, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22619522

RESUMEN

Chemoprevention that impedes one or more steps in carcinogenesis, via long-term administration of naturally occurring or synthetic compounds, is widely considered to be a crucial strategy for cancer control. Selenium (Se) has chemopreventive effects, but its application is limited due to a low therapeutic index as shown in numerous animal experiments. In contrast to Se, which was known for its toxicity prior to the discovery of its beneficial effects, the natural compound epigallocatechin-3-gallate (EGCG) was originally considered to be nontoxic. Due to its preventive effects on many types of cancer in various animal models, EGCG has been regarded as a prime example of a promising chemopreventive agent without major toxicity concerns. However, very recently, evidence has accumulated showing that efficacious doses of EGCG used in health promotion may not be far from its toxic dose level. Therefore, both Se and EGCG need to be modified by novel pharmaceutical technologies to attain enhanced efficacy and/or reduced toxicity. Nanotechnology may be one of these technologies. In support of this hypothesis, the characteristics of polylactic acid and polyethylene glycol-encapsulated nano-EGCG and elemental Se nanoparticles dispersed by bovine serum albumin are reviewed in this article. Encapsulation of EGCG to form nano-EGCG leads to its enhanced stability in plasma and remarkably superior chemopreventive effects, with more than tenfold dose advantages in inducing apoptosis and inhibition of both angiogenesis and tumor growth. Se at nanoparticle size ("Nano-Se"), compared with Se compounds commonly used in dietary supplements, has significantly lower toxicity, without compromising its ability to upregulate selenoenzymes at nutritional levels and induce phase II enzymes at supranutritional levels.


Asunto(s)
Catequina/análogos & derivados , Quimioprevención/métodos , Nanopartículas del Metal/administración & dosificación , Nanocápsulas/administración & dosificación , Selenio/administración & dosificación , Animales , Anticarcinógenos/administración & dosificación , Catequina/administración & dosificación , Catequina/toxicidad , Bovinos , Humanos , Ratones , Nanomedicina , Neoplasias/metabolismo , Neoplasias/prevención & control , Selenoproteínas/metabolismo , Albúmina Sérica Bovina/administración & dosificación
17.
Toxicology ; 278(2): 242-8, 2010 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-20920546

RESUMEN

HIV infection is more common among smokers than nonsmokers, and, remarkably, HIV-infected individuals are about 3 times more likely to smoke than the uninfected general population. However, the relationship between tobacco smoking and HIV/AIDS disease progression remains controversial. In this study, we demonstrate a potent enhancing effect of aqueous tobacco smoke extract (TSE) on HIV infectivity that is nicotine-independent. This increased infectivity is neither NF-κB mediated nor a direct result of oxidative stress, as it cannot be blocked by antioxidants. On the contrary, TSE itself was found to possess significant antioxidant potential, enabling it to protect the viability of both infected cells and HIV virions in the presence of peroxide. Assessment of TSE-induced alterations in cellular gene expression that may be involved in increasing HIV infectivity in T cells showed that TSE up-regulates some genes known to be capable of enhancing HIV and HCV infection, or protecting HIV, but down-regulates several genes involved in cellular defense and antigen presentation. These results demonstrate that tobacco smoke can enhance HIV infectivity, possibly by a combination of direct (antioxidant) and indirect (gene-based) mechanisms. This raises the concern that smoking may thereby increase the risk of acquisition or progression of HIV infection.


Asunto(s)
Infecciones por VIH/transmisión , VIH-1/patogenicidad , Nicotiana/efectos adversos , Humo/efectos adversos , Antioxidantes/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Progresión de la Enfermedad , Regulación hacia Abajo/efectos de los fármacos , VIH-1/metabolismo , Células HeLa , Humanos , Células Jurkat , Nicotina/efectos adversos , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Nicotiana/química , Regulación hacia Arriba/efectos de los fármacos , Virión/metabolismo
18.
Toxicology ; 278(1): 140-59, 2010 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19818374

RESUMEN

Many of the botanical "immunomodulators", a class of herbal medicines widely recognized in traditional medical systems such as Chinese Medicine (TCM) and Ayurvedic Medicine, alter immune function and may offer clinically relevant therapeutics or leads to therapeutics. Many of these traditional remedies are prepared from combinations of medicinal plants which may influence numerous molecular pathways. These effects may differ from the sum of effects from the individual plants and therefore, research demonstrating the effects of the formula is crucial for insights into the effects of traditional remedies. In this review we surveyed the primary literature for research that focused on combinations of medicinal plants and effects on cytokine activity. The results demonstrate that many extracts of herb mixtures have effects on at least one cytokine. The most commonly studies cytokines were IL-4, IL-6, IL-10, TNF and IFN-γ. The majority of the formulas researched derived from TCM. The following formulas had activity on at least three cytokines; Chizukit N, CKBM, Daeganghwal-tang, Food Allergy Formula, Gamcho-Sasim-Tang, Hachimi-jio-gan, Herbkines, Hochuekki, Immune System Formula, Jeo-Dang-Tang, Juzen-taiho-to, Kakkon-to, Kan jang, Mao-Bushi-Saishin-to, MSSM-002, Ninjin-youei-to, PG201, Protec, Qing-huo-bai-du-yin, Qingfu Guanjieshu, Sambucol Active Defense, Seng-fu-tang, Shin-Xiao-Xiang, Tien Hsien, Thuja formula, Unkei-to, Vigconic, Wheeze-relief-formula, Xia-Bai-San, Yangyuk-Sanhwa-Tang, Yi-fey Ruenn-hou, and Yuldahansotang. Of the western based combinations, formulas with Echinacea spp. were common and showed multiple activities. Numerous formulas demonstrated activity on both gene and protein expression. The research demonstrates that the reviewed botanical formulas modulate cytokine activity, although the bulk of the research is in vitro. Therapeutic success using these formulas may be partially due to their effects on cytokines. Further study of phytotherapy on cytokine related diseases/syndromes is necessary.


Asunto(s)
Citocinas/farmacología , Medicamentos Herbarios Chinos/farmacología , Factores Inmunológicos/farmacología , Extractos Vegetales/farmacología , Citocinas/inmunología , Humanos , Factores Inmunológicos/inmunología , Extractos Vegetales/inmunología
19.
Toxicology ; 278(1): 124-30, 2010 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19857540

RESUMEN

Although several specific micronutrient deficiencies are associated with disease progression and increased mortality risk in HIV/AIDS, and even a simple multivitamin/mineral supplement can prolong survival, this is typically viewed merely as nutritional support of the immune system, and only necessary if there are deficiencies to be rectified. However, the reality is more complex. Several striking nutrient-related metabolic abnormalities have been consistently documented in HIV infection. One is chronic oxidative stress, including a drastic depletion of cysteine from the glutathione pool, and a progressive decline of serum selenium that is correlated with disease progression and mortality. Another is decreased blood levels of tryptophan, with an associated intracellular niacin deficiency. Tryptophan depletion or "deletion" by induction of indoleamine-2,3-dioxygenase (IDO), the first step in oxidative tryptophan metabolism, is a known mechanism for immune suppression that is of critical importance in cancer and pregnancy, and, potentially, in HIV/AIDS. Existing evidence supports the hypothesis that these nutrient-related metabolic abnormalities in HIV infection regarding antioxidants, selenium, sulfur, tryptophan and niacin are interrelated, because HIV-associated oxidative stress can induce niacin/NAD+ depletion via activation of poly(ADP-ribose) polymerase (PARP), which could lead to tryptophan oxidation for compensatory de novo niacin synthesis, thereby contributing to immune tolerance and T-cell loss via tryptophan deletion and PARP-induced cell death. This "oxidative stress-induced niacin sink" (OSINS) model provides a mechanism whereby the oxidative stress associated with HIV infection can contribute to immunosuppression via tryptophan deletion. This model is directly supported by evidence that antioxidants can counteract indoleamine-2,3-dioxygenase (IDO), providing the critical link between oxidative stress and tryptophan metabolism proposed here. The OSINS model can be used to guide the design of nutraceutical regimens that can effectively complement antiretroviral therapy for HIV/AIDS.


Asunto(s)
Infecciones por VIH/metabolismo , VIH-1/metabolismo , Modelos Biológicos , Niacina/metabolismo , Estrés Oxidativo/fisiología , Triptófano/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Selenio/metabolismo , Azufre/metabolismo
20.
Toxicology ; 278(2): 229-41, 2010 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-19850100

RESUMEN

Natural phytochemicals derived from dietary sources or medicinal plants have gained significant recognition in the potential management of several human clinical conditions. Much research has also been geared towards the evaluation of plant extracts as effective prophylactic agents since they can act on specific and/or multiple molecular and cellular targets. Plants have been an abundant source of highly effective phytochemicals which offer great potential in the fight against cancer by inhibiting the process of carcinogenesis through the upregulation of cytoprotective genes that encode for carcinogen detoxifying enzymes and antioxidant enzymes. The mechanistic insight into chemoprevention further includes induction of cell cycle arrest and apoptosis or inhibition of signal transduction pathways mainly the mitogen-activated protein kinases (MAPK), protein kinases C (PKC), phosphoinositide 3-kinase (PI3K), glycogen synthase kinase (GSK) which lead to abnormal cyclooxygenase-2 (COX-2), activator protein-1 (AP-1), nuclear factor-kappaB (NF-κB) and c-myc expression. Effectiveness of chemopreventive agents reflects their ability to counteract certain upstream signals that leads to genotoxic damage, redox imbalances and other forms of cellular stress. Targeting malfunctioning molecules along the disrupted signal transduction pathway in cancer represent a rational strategy in chemoprevention. NF-κB and AP-1 provide mechanistic links between inflammation and cancer, and moreover regulate tumor angiogenesis and invasiveness, indicating that signaling pathways that mediate their activation provide attractive targets for new chemotherapeutic approaches. Thus cell signaling cascades and their interacting factors have become important targets of chemoprevention and phenolic phytochemicals and plant extracts seem to be promising in this endeavor.


Asunto(s)
Anticarcinógenos/farmacología , Neoplasias/prevención & control , Extractos Vegetales/farmacología , Animales , Antineoplásicos Fitogénicos/farmacología , Suplementos Dietéticos , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/genética , Neoplasias/patología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...