Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(16): e2214574120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036988

RESUMEN

The global loss of biodiversity has inspired actions to restore nature across the planet. Translocation and social attraction actions deliberately move or lure a target species to a restoration site to reintroduce or augment populations and enhance biodiversity and ecosystem resilience. Given limited conservation funding and rapidly accelerating extinction trajectories, tracking progress of these interventions can inform best practices and advance management outcomes. Seabirds are globally threatened and commonly targeted for translocation and social attraction ("active seabird restoration"), yet no framework exists for tracking these efforts nor informing best practices. This study addresses this gap for conservation decision makers responsible for seabirds and coastal management. We systematically reviewed active seabird restoration projects worldwide and collated results into a publicly accessible Seabird Restoration Database. We describe global restoration trends, apply a systematic process to measure success rates and response times since implementation, and examine global factors influencing outcomes. The database contains 851 active restoration events in 551 locations targeting 138 seabird species; 16% of events targeted globally threatened taxa. Visitation occurred in 80% of events and breeding occurred in 76%, on average 2 y after implementation began (SD = 3.2 y). Outcomes varied by taxonomy, with the highest and quickest breeding response rates for Charadriiformes (terns, gulls, and auks), primarily with social attraction. Given delayed and variable response times to active restoration, 5 y is appropriate before evaluating outcomes. The database and results serve as a model for tracking and evaluating restoration outcomes, and is applicable to measuring conservation interventions for additional threatened taxa.


Asunto(s)
Charadriiformes , Restauración y Remediación Ambiental , Animales , Conservación de los Recursos Naturales , Extinción Biológica , Internacionalidad , Cruzamiento , Ecosistema , Bases de Datos Factuales
2.
J Exp Zool A Ecol Integr Physiol ; 337(4): 381-392, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35167183

RESUMEN

Seabird breeding success is known to reflect oceanic conditions. Gray-faced petrels (Pterodroma gouldi) breeding on the east coast of Auckland, New Zealand, exhibit poor reproductive success and slow chick development compared to west coast conspecifics. This study mapped changes in physiological traits (corticosterone [CORT] and hematological parameters) indicative of sublethal stress in this Procellariiform species between the west coast (Ihumoana) and east coast (Hawere) island colonies. We found adult gray-faced petrels on the east coast to be lighter and, unlike west coast birds, exhibited an attenuation of response CORT levels between incubation and chick-rearing phases. Such responses were also reflected in east coast chicks that were lighter and had higher feather CORT titers than west coast chicks. Measures of adult hematology and plasma biochemistry revealed significantly lower glucose levels in east coast birds and indicated that chick rearing is the most stressful phase of breeding for this species Combined; these results suggest that east coast birds are under greater nutritional stress and that parents appear to transfer the costs of poor foraging to their chicks to preserve their own condition, consequently increasing chick developmental stress. Our results suggest that any long-term decrease in ocean conditions and/or climatic shifts would be more acutely felt by east coast chicks and potentially their parents, resulting in years of poor breeding success rates on a local scale.


Asunto(s)
Aves , Corticosterona , Animales , Biomarcadores , Aves/fisiología , Plumas , Reproducción
3.
PLoS One ; 13(6): e0197766, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29949581

RESUMEN

Unresolved taxonomy of threatened species is problematic for conservation as the field relies on species being distinct taxonomic units. Differences in breeding habitat and results from a preliminary molecular analysis indicated that the New Zealand population of the South Georgian Diving Petrel (Pelecanoides georgicus) was a distinct, yet undescribed, species. We measured 11 biometric characters and scored eight plumage characters in 143 live birds and 64 study skins originating from most populations of P. georgicus, to assess their taxonomic relationships. We analysed differences with principal component analyses (PCA), factorial ANOVAs, and Kruskal-Wallis rank sum tests. Results show that individuals from New Zealand differ significantly from P. georgicus from all other populations as following: 1) longer wings, 2) longer outer tail feathers, 3) deeper bills, 4) longer heads, 5) longer tarsi, 6) limited collar extent, 7) greater extent of contrasting scapulars, 8) larger contrasting markings on the secondaries, 9) paler ear coverts, 10) paler collars, and 11) paler flanks. Furthermore, we used a species delimitation test with quantitative phenotypic criteria; results reveal that the New Zealand population of P. georgicus indeed merits species status. We hereby name this new species Pelecanoides whenuahouensis sp. nov. Due to severe reductions in its range and the very low number of remaining birds (~150 individuals limited to a single breeding colony on Codfish Island/Whenua Hou) the species warrants listing as 'Critically Endangered'. An abstract in the Maori language/Te Reo Maori can be found in S1 File.


Asunto(s)
Aves/clasificación , Especies en Peligro de Extinción , Especiación Genética , Animales , Aves/genética , Clasificación , Ecosistema , Plumas , Nueva Zelanda , Fenotipo
4.
PLoS One ; 10(4): e0122811, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25922935

RESUMEN

We present a simple framework for classifying mutually exclusive behavioural states within the geospatial lifelines of animals. This method involves use of three sequentially applied statistical procedures: (1) behavioural change point analysis to partition movement trajectories into discrete bouts of same-state behaviours, based on abrupt changes in the spatio-temporal autocorrelation structure of movement parameters; (2) hierarchical multivariate cluster analysis to determine the number of different behavioural states; and (3) k-means clustering to classify inferred bouts of same-state location observations into behavioural modes. We demonstrate application of the method by analysing synthetic trajectories of known 'artificial behaviours' comprised of different correlated random walks, as well as real foraging trajectories of little penguins (Eudyptula minor) obtained by global-positioning-system telemetry. Our results show that the modelling procedure correctly classified 92.5% of all individual location observations in the synthetic trajectories, demonstrating reasonable ability to successfully discriminate behavioural modes. Most individual little penguins were found to exhibit three unique behavioural states (resting, commuting/active searching, area-restricted foraging), with variation in the timing and locations of observations apparently related to ambient light, bathymetry, and proximity to coastlines and river mouths. Addition of k-means clustering extends the utility of behavioural change point analysis, by providing a simple means through which the behaviours inferred for the location observations comprising individual movement trajectories can be objectively classified.


Asunto(s)
Conducta Animal , Spheniscidae/fisiología , Distribución Animal , Animales , Análisis por Conglomerados , Sistemas de Información Geográfica , Movimiento , Telemetría
5.
Mol Ecol Resour ; 9(2): 458-61, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21564674

RESUMEN

A lone petrel was shot from the decks of an Italian warship (the 'Magenta') while it was sailing the South Pacific Ocean in 1867, far from land. The species, unknown to science, was named the 'Magenta petrel' (Procellariiformes, Procellariidae, Pterodroma magentae). No other specimens of this bird were collected and the species it represented remained a complete enigma for over 100 years. We compared DNA sequence of the mitochondrial cytochrome b gene from the Magenta petrel to that of other petrels using phylogenetic methods and ancient DNA techniques. Our results strongly suggest that the Magenta petrel specimen is a Chatham Island taiko. Furthermore, given the collection location of the Magenta petrel, our finding indicates that the Chatham Island taiko forages far into the Pacific Ocean (near South America). This has implications for the conservation of the taiko, one of the world's rarest seabirds.

6.
Conserv Biol ; 22(5): 1267-76, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18717692

RESUMEN

Many rare and endangered species are difficult to locate, observe, and study. Consequently, many individuals, breeding pairs, and even populations of such species could remain undetected. Genetic markers can potentially be used to detect the existence of undiscovered individuals and populations, and we propose a method to do so that requires 3 conditions. First, sampling of the known population(s) of the target species must be comprehensive. Second, the species must display a reasonable level of philopatry and genetic structuring. Third, individuals must be able to be caught outside of breeding locations (e.g., at courtship or feeding areas, in flight), and the level of recapture must be reasonably high. We applied our method to the Chatham Island Taiko (Pterodroma magentae), one of the world's most endangered seabirds. We sequenced the Taiko mitochondrial cytochrome b gene and both copies of a fragment of the duplicated domain I of the control region. Twenty-one haplotypes were revealed, including 4 (19%) not found in birds at known burrows. These results suggest there are more burrow groups yet to be located. The species is a pelagic gadfly petrel that inhabits land only in the breeding season during which it is nocturnal and nests in burrows. Taiko burrows are situated in dense forest in a remote area of Chatham Island, and are consequently difficult to locate and study. It is important that all Taiko burrows be discovered to enable monitoring and protection of the birds from exotic predators.


Asunto(s)
Aves/genética , Conservación de los Recursos Naturales/métodos , Marcadores Genéticos/genética , Genética de Población , Fenómenos de Retorno al Lugar Habitual/fisiología , Animales , Secuencia de Bases , Aves/fisiología , Análisis por Conglomerados , ADN Mitocondrial/genética , Haplotipos/genética , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Nueva Zelanda , Análisis de Secuencia de ADN , Especificidad de la Especie , Telemetría
7.
Proc Natl Acad Sci U S A ; 103(34): 12799-802, 2006 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-16908846

RESUMEN

Electronic tracking tags have revolutionized our understanding of broad-scale movements and habitat use of highly mobile marine animals, but a large gap in our knowledge still remains for a wide range of small species. Here, we report the extraordinary transequatorial postbreeding migrations of a small seabird, the sooty shearwater, obtained with miniature archival tags that log data for estimating position, dive depth, and ambient temperature. Tracks (262+/-23 days) reveal that shearwaters fly across the entire Pacific Ocean in a figure-eight pattern while traveling 64,037+/-9,779 km roundtrip, the longest animal migration ever recorded electronically. Each shearwater made a prolonged stopover in one of three discrete regions off Japan, Alaska, or California before returning to New Zealand through a relatively narrow corridor in the central Pacific Ocean. Transit rates as high as 910+/-186 km.day-1 were recorded, and shearwaters accessed prey resources in both the Northern and Southern Hemisphere's most productive waters from the surface to 68.2 m depth. Our results indicate that sooty shearwaters integrate oceanic resources throughout the Pacific Basin on a yearly scale. Sooty shearwater populations today are declining, and because they operate on a global scale, they may serve as an important indicator of climate change and ocean health.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Estaciones del Año , Sistemas de Identificación Animal , Animales , Océano Pacífico , Lluvia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...