Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(1): 113596, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38117652

RESUMEN

Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Epítopos de Linfocito T , Antígenos de Histocompatibilidad Clase I , Antígenos HLA , Antígenos de Histocompatibilidad , Linfocitos T CD8-positivos , Péptidos
2.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398281

RESUMEN

Targeted synthetic vaccines have the potential to transform our response to viral outbreaks; yet the design of these vaccines requires a comprehensive knowledge of viral immunogens, including T-cell epitopes. Having previously mapped the SARS-CoV-2 HLA-I landscape, here we report viral peptides that are naturally processed and loaded onto HLA-II complexes in infected cells. We identified over 500 unique viral peptides from canonical proteins, as well as from overlapping internal open reading frames (ORFs), revealing, for the first time, the contribution of internal ORFs to the HLA-II peptide repertoire. Most HLA-II peptides co-localized with the known CD4+ T cell epitopes in COVID-19 patients. We also observed that two reported immunodominant regions in the SARS-CoV-2 membrane protein are formed at the level of HLA-II presentation. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and non-structural and non-canonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize the vaccine effectiveness.

3.
Immunity ; 56(7): 1681-1698.e13, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37301199

RESUMEN

CD4+ T cell responses are exquisitely antigen specific and directed toward peptide epitopes displayed by human leukocyte antigen class II (HLA-II) on antigen-presenting cells. Underrepresentation of diverse alleles in ligand databases and an incomplete understanding of factors affecting antigen presentation in vivo have limited progress in defining principles of peptide immunogenicity. Here, we employed monoallelic immunopeptidomics to identify 358,024 HLA-II binders, with a particular focus on HLA-DQ and HLA-DP. We uncovered peptide-binding patterns across a spectrum of binding affinities and enrichment of structural antigen features. These aspects underpinned the development of context-aware predictor of T cell antigens (CAPTAn), a deep learning model that predicts peptide antigens based on their affinity to HLA-II and full sequence of their source proteins. CAPTAn was instrumental in discovering prevalent T cell epitopes from bacteria in the human microbiome and a pan-variant epitope from SARS-CoV-2. Together CAPTAn and associated datasets present a resource for antigen discovery and the unraveling genetic associations of HLA alleles with immunopathologies.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , Captano , SARS-CoV-2 , Antígenos HLA , Epítopos de Linfocito T , Péptidos
4.
Nat Commun ; 14(1): 1851, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012232

RESUMEN

Serial multi-omic analysis of proteome, phosphoproteome, and acetylome provides insights into changes in protein expression, cell signaling, cross-talk and epigenetic pathways involved in disease pathology and treatment. However, ubiquitylome and HLA peptidome data collection used to understand protein degradation and antigen presentation have not together been serialized, and instead require separate samples for parallel processing using distinct protocols. Here we present MONTE, a highly sensitive multi-omic native tissue enrichment workflow, that enables serial, deep-scale analysis of HLA-I and HLA-II immunopeptidome, ubiquitylome, proteome, phosphoproteome, and acetylome from the same tissue sample. We demonstrate that the depth of coverage and quantitative precision of each 'ome is not compromised by serialization, and the addition of HLA immunopeptidomics enables the identification of peptides derived from cancer/testis antigens and patient specific neoantigens. We evaluate the technical feasibility of the MONTE workflow using a small cohort of patient lung adenocarcinoma tumors.


Asunto(s)
Neoplasias Pulmonares , Proteoma , Masculino , Humanos , Proteoma/metabolismo , Flujo de Trabajo , Péptidos , Proteómica/métodos
5.
STAR Protoc ; 3(4): 101910, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36595954

RESUMEN

Immunopeptidome profiling of infected cells is a powerful technique for detecting viral peptides that are naturally processed and loaded onto class I human leukocyte antigens (HLAs-I). Here, we provide a protocol for preparing samples for immunopeptidome profiling that can inactivate enveloped viruses while still preserving the integrity of the HLA-I complex. We detail steps for lysate preparation of infected cells followed by HLA-I immunoprecipitation and virus inactivation. We further describe peptide purification for mass spectrometry outside a high-containment facility. For complete details on the use and execution of this protocol, please refer to Weingarten-Gabbay et al. (2021).1.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Virus , Humanos , Péptidos/química , Espectrometría de Masas
6.
Cell ; 184(15): 3962-3980.e17, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34171305

RESUMEN

T cell-mediated immunity plays an important role in controlling SARS-CoV-2 infection, but the repertoire of naturally processed and presented viral epitopes on class I human leukocyte antigen (HLA-I) remains uncharacterized. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two cell lines at different times post infection using mass spectrometry. We found HLA-I peptides derived not only from canonical open reading frames (ORFs) but also from internal out-of-frame ORFs in spike and nucleocapsid not captured by current vaccines. Some peptides from out-of-frame ORFs elicited T cell responses in a humanized mouse model and individuals with COVID-19 that exceeded responses to canonical peptides, including some of the strongest epitopes reported to date. Whole-proteome analysis of infected cells revealed that early expressed viral proteins contribute more to HLA-I presentation and immunogenicity. These biological insights, as well as the discovery of out-of-frame ORF epitopes, will facilitate selection of peptides for immune monitoring and vaccine development.


Asunto(s)
Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Sistemas de Lectura Abierta/genética , Péptidos/inmunología , Proteoma/inmunología , SARS-CoV-2/inmunología , Células A549 , Alelos , Secuencia de Aminoácidos , Animales , Presentación de Antígeno/inmunología , COVID-19/inmunología , COVID-19/virología , Femenino , Células HEK293 , Humanos , Cinética , Masculino , Ratones , Péptidos/química , Linfocitos T/inmunología
7.
Mol Cell Proteomics ; 20: 100116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34146720

RESUMEN

Immunotherapies have emerged to treat diseases by selectively modulating a patient's immune response. Although the roles of T and B cells in adaptive immunity have been well studied, it remains difficult to select targets for immunotherapeutic strategies. Because human leukocyte antigen class II (HLA-II) peptides activate CD4+ T cells and regulate B cell activation, proliferation, and differentiation, these peptide antigens represent a class of potential immunotherapy targets and biomarkers. To better understand the molecular basis of how HLA-II antigen presentation is involved in disease progression and treatment, systematic HLA-II peptidomics combined with multiomic analyses of diverse cell types in healthy and diseased states is required. For this reason, MS-based innovations that facilitate investigations into the interplay between disease pathologies and the presentation of HLA-II peptides to CD4+ T cells will aid in the development of patient-focused immunotherapies.


Asunto(s)
Antígenos de Histocompatibilidad Clase II/inmunología , Inmunoterapia , Péptidos/inmunología , Animales , Presentación de Antígeno , Genómica , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Espectrometría de Masas , Péptidos/genética
8.
Front Microbiol ; 11: 596227, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240251

RESUMEN

Biofilms are highly tolerant to antibiotics and underlie the recalcitrance of many chronic infections. We demonstrate that mature Staphylococcus aureus biofilms can be substantially sensitized to the treatment by pulse dosing of an antibiotic - in this case, oxacillin. Pulse (periodic) dosing was compared to continuous application of antibiotic and was studied in a novel in vitro flow system which allowed for robust biofilm growth and tractable pharmacokinetics of dosing regimens. Our results highlight that a subpopulation of the biofilm survives antibiotic without becoming resistant, a population we refer to as persister bacteria. When oxacillin was continuously present the persister level did not decline, but, importantly, providing correctly timed periodic breaks decreased the surviving population. We found that the length of the periodic break impacted efficacy, and there was an optimal length that sensitized the biofilm to repeat treatment without allowing resistance expansion. Periodic dosing provides a potential simple solution to a complicated problem.

9.
bioRxiv ; 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33024965

RESUMEN

T cell-mediated immunity may play a critical role in controlling and establishing protective immunity against SARS-CoV-2 infection; yet the repertoire of viral epitopes responsible for T cell response activation remains mostly unknown. Identification of viral peptides presented on class I human leukocyte antigen (HLA-I) can reveal epitopes for recognition by cytotoxic T cells and potential incorporation into vaccines. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two human cell lines at different times post-infection using mass spectrometry. We found HLA-I peptides derived not only from canonical ORFs, but also from internal out-of-frame ORFs in Spike and Nucleoprotein not captured by current vaccines. Proteomics analyses of infected cells revealed that SARS-CoV-2 may interfere with antigen processing and immune signaling pathways. Based on the endogenously processed and presented viral peptides that we identified, we estimate that a pool of 24 peptides would provide one or more peptides for presentation by at least one HLA allele in 99% of the human population. These biological insights and the list of naturally presented SARS-CoV-2 peptides will facilitate data-driven selection of peptides for immune monitoring and vaccine development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...