Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 914: 169445, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159778

RESUMEN

DNA metabarcoding has been performed on a large number of river phytobenthos samples collected from the UK, using rbcL primers optimised for diatoms. Within this dataset the composition of non-diatom sequence reads was studied and the effect of including these in models for evaluating the nutrient gradient was assessed. Whilst many non-diatom taxonomic groups were detected, few contained the full diversity expected in riverine environments. This may be due to the performance of the current primers in characterising the wider phytobenthic community and influenced by the sampling method employed, as both were developed specifically for diatoms. Nevertheless, the study identified considerable diversity in some groups, e.g. Eustigmatophyceae and a wider distribution than previously thought for freshwater Phaeophyceae. These results offer a strong case for the benefits of metabarcoding for expanding knowledge of aquatic biodiversity in the UK and elsewhere. Many of the ASVs associated with non-diatoms showed significant pressure responses; however, models that included non-diatoms had similar predictive strength to those based on diatoms alone. Whilst limitations of the primers for assessing non-diatoms may play a role in explaining these results, the diatoms provide a strong signal along the nutrient gradient and other algae, therefore, add little unique information. We recommend that future developments should use ASVs to calculate metrics, with links to reference databases made as a final step to generate lists of taxa to support interpretation. Any further exploration of the potential of non-diatoms would benefit from access to a well-curated reference database, similar to diat.barcode. Such a database does not yet exist, and we caution against the indiscriminate use of NCBI GenBank as a taxonomic resource as many rbcL sequences deposited have not been curated.


Asunto(s)
Diatomeas , Ríos , Agua Dulce , Biodiversidad , Bases de Datos Factuales , Monitoreo del Ambiente , Ecosistema
2.
Environ Pollut ; 332: 121873, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37244532

RESUMEN

Plastics are abundant artificial substrates in aquatic systems that host a wide variety of organisms (the plastisphere), including potential pathogens and invasive species. Plastisphere communities have many complex, but not well-understood ecological interactions. It is pivotal to investigate how these communities are influenced by the natural fluctuations in aquatic ecosystems, especially in transitional environments such as estuaries. Further study is needed in subtropical regions in the Southern Hemisphere, where plastic pollution is ever increasing. Here we applied DNA-metabarcoding (16S, 18S and ITS-2) as well Scanning Electron Microscopy (SEM) to assess the diversity of the plastisphere in the Patos Lagoon estuary (PLE), South Brazil. Through a one-year in situ colonization experiment, polyethylene (PE) and polypropylene (PP) plates were placed in shallow waters, and sampled after 30 and 90 days within each season. Over 50 taxa including bacteria, fungi and other eukaryotes were found through DNA analysis. Overall, the polymer type did not influence the plastisphere community composition. However, seasonality significantly affected community composition for bacteria, fungi and general eukaryotes. Among the microbiota, we found Acinetobacter sp., Bacillus sp., and Wallemia mellicola that are putative pathogens of aquatic organisms, such as algae, shrimp and fish, including commercial species. In addition, we identified organisms within genera that can potentially degrade hydrocarbons (e.g. Pseudomonas and Cladosporium spp). This study is the first to assess the full diversity and variation of the plastisphere on different polymers within a subtropical Southern Hemisphere estuary, significantly expanding knowledge on plastic pollution and the plastisphere in estuarine regions.


Asunto(s)
Incrustaciones Biológicas , Plásticos , Polímeros , Estuarios , Estaciones del Año , Ecosistema , Eucariontes , Hongos , Bacterias/genética
3.
Sci Rep ; 12(1): 10089, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710829

RESUMEN

Tropical coastal lagoons are important ecosystems that support high levels of biodiversity and provide several goods and services. Monitoring of benthic biodiversity and detection of harmful or invasive species is crucial, particularly in relation to seasonal and spatial variation of environmental conditions. In this study, eDNA metabarcoding was used in two tropical coastal lagoons, Chacahua (CH) and Corralero (C) (Southern Mexican Pacific), to describe the benthic biodiversity and its spatial-temporal dynamics. The distribution of benthic diversity within the lagoons showed a very particular pattern evidencing a transition from freshwater to seawater. Although the two lagoon systems are similar in terms of the species composition of metazoans and microeukaryotes, our findings indicate that they are different in taxa richness and structure, resulting in regional partitioning of the diversity with salinity as the driving factor of community composition in CH. Harmful, invasive, non-indigenous species, bioindicators and species of commercial importance were detected, demonstrating the reach of this technique for biodiversity monitoring along with the continued efforts of building species reference libraries.


Asunto(s)
ADN Ambiental , Eucariontes , Biodiversidad , Código de Barras del ADN Taxonómico , ADN Ambiental/genética , Ecosistema , Monitoreo del Ambiente/métodos , Eucariontes/genética , Agua de Mar
4.
Cell Signal ; 94: 110311, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35306137

RESUMEN

B-cell receptor (BCR) signaling plays a major role in the pathogenesis of B-cell malignancies and is an established target for therapy, including in chronic lymphocytic leukemia cells (CLL), the most common B-cell malignancy. We previously demonstrated that activation of BCR signaling in primary CLL cells downregulated expression of PDCD4, an inhibitor of the translational initiation factor eIF4A and a potential tumor suppressor in lymphoma. Regulation of the PDCD4/eIF4A axis appeared to be important for expression of the MYC oncoprotein as MYC mRNA translation was increased following BCR stimulation and MYC protein induction was repressed by pharmacological inhibition of eIF4A. Here we show that MYC expression is also associated with PDCD4 down-regulation in CLL cells in vivo and characterize the signaling pathways that mediate BCR-induced PDCD4 down-regulation in CLL and lymphoma cells. PDCD4 downregulation was mediated by proteasomal degradation as it was inhibited by proteasome inhibitors in both primary CLL cells and B-lymphoma cell lines. In lymphoma cells, PDCD4 degradation was predominantly dependent on signaling via the AKT pathway. By contrast, in CLL cells, both ERK and AKT pathways contributed to PDCD4 down-regulation and dual inhibition using ibrutinib with either MEK1/2 or mTORC1 inhibition was required to fully reverse PDCD4 down-regulation. Consistent with this, dual inhibition of BTK with MEK1/2 or mTORC1 resulted in the strongest inhibition of BCR-induced MYC expression. This study provides important new insight into the regulation of mRNA translation in B-cell malignancies and a rationale for combinations of kinase inhibitors to target translation control and MYC expression.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Proteínas Reguladoras de la Apoptosis/metabolismo , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/uso terapéutico , Transducción de Señal
5.
Sci Total Environ ; 805: 150186, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34818771

RESUMEN

The lack of information about plastic pollution in many marine regions hinders firm actions to manage human activities and mitigate their impacts. This study conducted for the first time a quali-quantitative evaluation of floating plastics and their associated biota from coastal and oceanic waters in South Brazil. Plastics were collected using a manta net, and were categorized according to their shape, size, malleability and polymer composition. Multi-marker DNA metabarcoding (16S, and 18S V4 and V9 rRNA regions) was performed to identify prokaryotes and eukaryotes associated to plastics. We found 371 likely plastic particles of several sizes, shapes and polymers, and the average concentration of plastics at the region was 4461 items.km-2 (SD ± 3914). Microplastics (0.5 - 5 mm) were dominant in most sampling stations, with fragments and lines representing the most common shapes. Diverse groups of prokaryotes (20 bacteria phyla) and eukaryotes (41 groups) were associated with plastics. Both the community composition and richness of epiplastic organisms were highly variable between individual plastics but, in general, were not influenced by plastic categories. Organisms with potential pathogenicity (e.g. Vibrio species. and Alexandrium tamarense), as well as potential plastic degraders (e.g. Ralstonia, Pseudomonas, and Alcanivorax species), were found. The information generated here is pivotal to support strategies to prevent the input and mitigate the impacts of plastics and their associated organisms on marine environments.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Biota , Monitoreo del Ambiente , Humanos , Microplásticos , Océanos y Mares , Contaminantes Químicos del Agua/análisis
6.
Plants (Basel) ; 10(11)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34834769

RESUMEN

This work aims to understand how Vitis vinifera (Chardonnay) vines prioritise the export and distribution of recently fixed photoassimilate between root tissue, fruit, and defence, following the elicitation of a defence response. Jasmonic acid (JA) and its methyl ester, MeJA, are endogenous plant hormones, known collectively as jasmonates, that have signalling roles in plant defence and consequently are often used to prime plant defence systems. Here, we use exogenous jasmonate application to mature source leaves of Chardonnay grapevines to elucidate the prioritisation strategy of carbon allocation between plant defence and growth. Our results demonstrate that jasmonate application to Chardonnay leaves can elicit a defence response to Botrytis cinerea, but the effect was localised to the jasmonate-treated area. We found no evidence of a systemic defence response in non-treated mature leaves or young growing tissue. JA application reduced the photosynthetic rate of the treated leaf and reduced the export rate of recently fixed carbon-11 from the leaf. Following JA application, a greater proportion of available recently fixed carbon was allocated to the roots, suggesting an increase in sink strength of the roots. Relative sink strength of the berries did not change; however, an increase in berry sugar was observed seven days after JA treatment. We conclude that the data provide evidence for a "high sugar resistance" model in the mature treated leaves of the vine, since the export of carbon was reduced to ensure an elevated defence response in the treated leaf. The increase in berry sugar concentration seven days after treatment can be explained by the initial prioritisation of a greater portion of the exported carbon to storage in the roots, making it available for remobilisation to the berries once the challenge to defence had passed.

7.
Cell Mol Life Sci ; 78(17-18): 6337-6349, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34398253

RESUMEN

Signaling via the B-cell receptor (BCR) is a key driver and therapeutic target in chronic lymphocytic leukemia (CLL). BCR stimulation of CLL cells induces expression of eIF4A, an initiation factor important for translation of multiple oncoproteins, and reduces expression of PDCD4, a natural inhibitor of eIF4A, suggesting that eIF4A may be a critical nexus controlling protein expression downstream of the BCR in these cells. We, therefore, investigated the effect of eIF4A inhibitors (eIF4Ai) on BCR-induced responses. We demonstrated that eIF4Ai (silvestrol and rocaglamide A) reduced anti-IgM-induced global mRNA translation in CLL cells and also inhibited accumulation of MYC and MCL1, key drivers of proliferation and survival, respectively, without effects on upstream signaling responses (ERK1/2 and AKT phosphorylation). Analysis of normal naïve and non-switched memory B cells, likely counterparts of the two main subsets of CLL, demonstrated that basal RNA translation was higher in memory B cells, but was similarly increased and susceptible to eIF4Ai-mediated inhibition in both. We probed the fate of MYC mRNA in eIF4Ai-treated CLL cells and found that eIF4Ai caused a profound accumulation of MYC mRNA in anti-IgM treated cells. This was mediated by MYC mRNA stabilization and was not observed for MCL1 mRNA. Following drug wash-out, MYC mRNA levels declined but without substantial MYC protein accumulation, indicating that stabilized MYC mRNA remained blocked from translation. In conclusion, BCR-induced regulation of eIF4A may be a critical signal-dependent nexus for therapeutic attack in CLL and other B-cell malignancies, especially those dependent on MYC and/or MCL1.


Asunto(s)
Factor 4A Eucariótico de Iniciación/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Anticuerpos Antiidiotipos/farmacología , Benzofuranos/farmacología , Células Cultivadas , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/genética , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología
8.
Sci Rep ; 11(1): 11676, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083646

RESUMEN

In follicular lymphoma (FL), surface immunoglobulin (sIg) carries mandatory N-glycosylation sites in the variable regions, inserted during somatic hypermutation. These glycosylation sites are tumor-specific, indicating a critical function in FL. Added glycan unexpectedly terminates at high mannose (Mann) and confers capability for sIg-mediated interaction with local macrophage-expressed DC-SIGN lectin resulting in low-level activation of upstream B-cell receptor signaling responses. Here we show that despite being of low-level, DC-SIGN induces a similar downstream transcriptional response to anti-IgM in primary FL cells, characterized by activation of pathways associated with B-cell survival, proliferation and cell-cell communication. Lectin binding was also able to engage post-transcriptional receptor cross-talk pathways since, like anti-IgM, DC-SIGN down-modulated cell surface expression of CXCR4. Importantly, pre-exposure of a FL-derived cell line expressing sIgM-Mann or primary FL cells to DC-SIGN, which does not block anti-IgM binding, reversibly paralyzed the subsequent Ca2+ response to anti-IgM. These novel findings indicate that modulation of sIg function occurs in FL via lectin binding to acquired mannoses. The B-cell receptor alternative engagement described here provides two advantages to lymphoma cells: (i) activation of signaling, which, albeit of low-level, is sufficient to trigger canonical lymphoma-promoting responses, and (ii) protection from exogenous antigen by paralyzing anti-IgM-induced signaling. Blockade of this alternative engagement could offer a new therapeutic strategy.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Lectinas Tipo C/metabolismo , Linfoma Folicular/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Calcio/metabolismo , Señalización del Calcio , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glicosilación , Humanos , Inmunoglobulina M/inmunología , Lectinas Tipo C/genética , Linfoma Folicular/genética , Linfoma Folicular/inmunología , Unión Proteica , Receptores CXCR4/metabolismo , Receptores de Superficie Celular/genética
9.
Trends Parasitol ; 37(10): 875-889, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34158247

RESUMEN

There is a large diversity of eukaryotic symbionts of copepods, dominated by epizootic protists such as ciliates, and metazoan parasites. Eukaryotic endoparasites, copepod-associated bacteria, and viruses are less well known, partly due to technical limitations. However, new molecular techniques, combined with a range of other approaches, provide a complementary toolkit for understanding the complete symbiome of copepods and how the symbiome relates to their ecological roles, relationships with other biota, and responses to environmental change. In this review we provide the most complete overview of the copepod symbiome to date, including microeukaryotes, metazoan parasites, bacteria, and viruses, and provide extensive literature databases to inform future studies.


Asunto(s)
Copépodos , Simbiosis , Animales , Copépodos/microbiología , Copépodos/parasitología , Copépodos/virología , Ecosistema , Eucariontes/genética , Microbiota/genética
10.
Microbiome ; 9(1): 48, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597033

RESUMEN

BACKGROUND: Salt marshes are major natural repositories of sequestered organic carbon with high burial rates of organic matter, produced by highly productive native flora. Accumulated carbon predominantly exists as lignocellulose which is metabolised by communities of functionally diverse microbes. However, the organisms that orchestrate this process and the enzymatic mechanisms employed that regulate the accumulation, composition and permanence of this carbon stock are not yet known. We applied meta-exo-proteome proteomics and 16S rRNA gene profiling to study lignocellulose decomposition in situ within the surface level sediments of a natural established UK salt marsh. RESULTS: Our studies revealed a community dominated by Gammaproteobacteria, Bacteroidetes and Deltaproteobacteria that drive lignocellulose degradation in the salt marsh. We identify 42 families of lignocellulolytic bacteria of which the most active secretors of carbohydrate-active enzymes were observed to be Prolixibacteracea, Flavobacteriaceae, Cellvibrionaceae, Saccharospirillaceae, Alteromonadaceae, Vibrionaceae and Cytophagaceae. These families secreted lignocellulose-active glycoside hydrolase (GH) family enzymes GH3, GH5, GH6, GH9, GH10, GH11, GH13 and GH43 that were associated with degrading Spartina biomass. While fungi were present, we did not detect a lignocellulolytic contribution from fungi which are major contributors to terrestrial lignocellulose deconstruction. Oxidative enzymes such as laccases, peroxidases and lytic polysaccharide monooxygenases that are important for lignocellulose degradation in the terrestrial environment were present but not abundant, while a notable abundance of putative esterases (such as carbohydrate esterase family 1) associated with decoupling lignin from polysaccharides in lignocellulose was observed. CONCLUSIONS: Here, we identify a diverse cohort of previously undefined bacteria that drive lignocellulose degradation in the surface sediments of the salt marsh environment and describe the enzymatic mechanisms they employ to facilitate this process. Our results increase the understanding of the microbial and molecular mechanisms that underpin carbon sequestration from lignocellulose within salt marsh surface sediments in situ and provide insights into the potential enzymatic mechanisms regulating the enrichment of polyphenolics in salt marsh sediments. Video Abstract.


Asunto(s)
Sedimentos Geológicos/microbiología , Lignina/metabolismo , Microbiota/fisiología , Humedales , Microbiota/genética , ARN Ribosómico 16S/genética , Reino Unido
11.
Pain Manag ; 10(6): 399-410, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33073690

RESUMEN

Aim: Assessing pain perception through self-reports may not be possible in some patients, for example, sedated. Our group considered if facial electromyography (fEMG) could provide a useful alternative, by testing on healthy participants subjected to experimental pain. Materials & methods: Activity of four facial muscles was recorded using fEMG alongside self-reported pain scores and physiological parameters. Results: The pain stimulus elicited significant activity on all facial muscles of interest as well as increases in heart rate. Activity from two of the facial muscles correlated significantly against pain intensity. Conclusion: Pain perception can be assessed through fEMG on healthy participants. We believe that this model would be valuable to clinicians that need to diagnose pain perception in circumstances where verbal reporting is not possible.


Asunto(s)
Músculos Faciales , Dolor Facial , Electromiografía , Dolor Facial/diagnóstico , Voluntarios Sanos , Frecuencia Cardíaca , Humanos
12.
Explor Target Antitumor Ther ; 1: 3-25, 2020 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-32924027

RESUMEN

Cancer development is frequently associated with dysregulation of mRNA translation to enhance both increased global protein synthesis and translation of specific mRNAs encoding oncoproteins. Thus, targeted inhibition of mRNA translation is viewed as a promising new approach for cancer therapy. In this article we review current progress in investigating dysregulation of mRNA translation initiation in mature B-cell neoplasms, focusing on chronic lymphocytic leukemia, follicular lymphoma and diffuse large B-cell lymphoma. We discuss mechanisms and regulation of mRNA translation, potential pathways by which genetic alterations and the tumor microenvironment alters mRNA translation in malignant B cells, preclinical evaluation of drugs targeted against specific eukaryotic initiation factors and current progress towards clinical development. Overall, inhibition of mRNA translation initiation factors is an exciting and promising area for development of novel targeted anti-tumor drugs.

13.
Nat Commun ; 11(1): 2636, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457288

RESUMEN

The mechanisms regulating community composition and local dominance of trees in species-rich forests are poorly resolved, but the importance of interactions with soil microbes is increasingly acknowledged. Here, we show that tree seedlings that interact via root-associated fungal hyphae with soils beneath neighbouring adult trees grow faster and have greater survival than seedlings that are isolated from external fungal mycelia, but these effects are observed for species possessing ectomycorrhizas (ECM) and not arbuscular mycorrhizal (AM) fungi. Moreover, survival of naturally-regenerating AM seedlings over ten years is negatively related to the density of surrounding conspecific plants, while survival of ECM tree seedlings displays positive density dependence over this interval, and AM seedling roots contain greater abundance of pathogenic fungi than roots of ECM seedlings. Our findings show that neighbourhood interactions mediated by beneficial and pathogenic soil fungi regulate plant demography and community structure in hyperdiverse forests.


Asunto(s)
Micorrizas/fisiología , Microbiología del Suelo , Árboles/microbiología , China , Bosques , Hongos/genética , Hongos/patogenicidad , Hongos/fisiología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Modelos Biológicos , Biología Molecular , Micorrizas/genética , Micorrizas/patogenicidad , Plantones/crecimiento & desarrollo , Plantones/microbiología , Simbiosis , Árboles/crecimiento & desarrollo
14.
Mol Ecol ; 29(10): 1903-1918, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32270556

RESUMEN

Marine plastic pollution has a range of negative impacts for biota and the colonization of plastics in the marine environment by microorganisms may have significant ecological impacts. However, data on epiplastic organisms, particularly fungi, is still lacking for many ocean regions. To evaluate plastic associated fungi and their geographic distribution, we characterised plastics sampled from surface waters of the western South Atlantic (WSA) and Antarctic Peninsula (AP), using DNA metabarcoding of three molecular markers (ITS2, 18S rRNA V4 and V9 regions). Numerous taxa from eight fungal phyla and a total of 64 orders were detected, including groups that had not yet been described associated with plastics. There was a varied phylogenetic assemblage of predominantly known saprotrophic taxa within the Ascomycota and Basidiomycota. We found a range of marine cosmopolitan genera present on plastics in both locations, i.e., Aspergillus, Cladosporium, Wallemia and a number of taxa unique to each region, as well as a high variation of taxa such as Chytridiomycota and Aphelidomycota between locations. Within these basal fungal groups we identified a number of phylogenetically novel taxa. This is the first description of fungi from the Plastisphere within the Southern Hemisphere, and highlights the need to further investigate the potential impacts of plastic associated fungi on other organisms and marine ecosystems.


Asunto(s)
Hongos/clasificación , Plásticos , Contaminantes del Agua , Regiones Antárticas , Código de Barras del ADN Taxonómico , Filogenia
15.
Front Immunol ; 10: 243, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30837993

RESUMEN

Natural interactions between the diet, microbiome, and immunity are largely unstudied. Here we employ wild three-spined sticklebacks as a model, combining field observations with complementary experimental manipulations of diet designed to mimic seasonal variation in the wild. We clearly demonstrate that season-specific diets are a powerful causal driver of major systemic immunophenotypic variation. This effect occurred largely independently of the bulk composition of the bacterial microbiome (which was also driven by season and diet) and of host condition, demonstrating neither of these, per se, constrain immune allocation in healthy individuals. Nonetheless, through observations in multiple anatomical compartments, differentially exposed to the direct effects of food and immunity, we found evidence of immune-driven control of bacterial community composition in mucus layers. This points to the interactive nature of the host-microbiome relationship, and is the first time, to our knowledge, that this causal chain (diet → immunity → microbiome) has been demonstrated in wild vertebrates. Microbiome effects on immunity were not excluded and, importantly, we identified outgrowth of potentially pathogenic bacteria (especially mycolic-acid producing corynebacteria) as a consequence of the more animal-protein-rich summertime diet. This may provide part of the ultimate explanation (and possibly a proximal cue) for the dramatic immune re-adjustments that we saw in response to diet change.


Asunto(s)
Peces/inmunología , Inmunidad Innata/inmunología , Microbiota/inmunología , Animales , Bacterias/inmunología , Dieta , Alimentos , Estaciones del Año
16.
FEMS Microbiol Ecol ; 95(2)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30551221

RESUMEN

Sediment nitrogen cycling is a network of microbially mediated biogeochemical processes that are vital in regulating ecosystem functioning. Mucopolysaccharides (mucus) are produced by many invertebrates and have the potential to be an important source of organic carbon and nitrogen to sediment microorganisms. At present, we have limited understanding of how mucopolysaccharide moderates total sediment microbial communities and specific microbial functional groups that drive nitrogen cycling processes. To start addressing this knowledge gap, sediment slurries were incubated with and without Hediste diversicolor mucus. Changes in dissolved inorganic nitrogen (ammonia, nitrite and nitrate) concentrations and bacterial and archaeal community diversity were assessed. Our results showed that mucopolysaccharide addition supported a more abundant and distinct microbial community. Moreover, mucus stimulated the growth of bacterial and archaeal ammonia oxidisers, with a concomitant increase in nitrite and nitrate. Hediste diversicolor mucopolysaccharide appears to enhance sediment nitrification rates by stimulating and fuelling nitrifying microbial groups. We propose that invertebrate mucopolysaccharide secretion should be considered as a distinct functional trait when assessing invertebrate contributions to sediment ecosystem function. By including this additional trait, we can improve our mechanistic understanding of invertebrate-microbe interactions in nitrogen transformation processes and provide opportunity to generate more accurate models of global nitrogen cycling.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Glicosaminoglicanos/metabolismo , Ciclo del Nitrógeno/fisiología , Poliquetos/metabolismo , Amoníaco/metabolismo , Animales , Archaea/metabolismo , Bacterias/metabolismo , Ecosistema , Sedimentos Geológicos/microbiología , Nitratos/metabolismo , Nitrificación , Nitritos/metabolismo , Nitrógeno , Oxidación-Reducción
17.
Sci Rep ; 8(1): 15500, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30341362

RESUMEN

One of the most common approaches for investigating the ecology of spatially complex environments is to examine a single biotic assemblage present, such as macroinvertebrates. Underlying this approach are assumptions that sampled and unsampled taxa respond similarly to environmental gradients and exhibit congruence across different sites. These assumptions were tested for five benthic groups of various sizes (archaea, bacteria, microbial eukaryotes/protists, meiofauna and macrofauna) in Plymouth Sound, a harbour with many different pollution sources. Sediments varied in granulometry, hydrocarbon and trace metal concentrations. Following variable reduction, canonical correspondence analysis did not identify any associations between sediment characteristics and assemblage composition of archaea or macrofauna. In contrast, variation in bacteria was associated with granulometry, trace metal variations and bioturbation (e.g. community bioturbation potential). Protists varied with granulometry, hydrocarbon and trace metal predictors. Meiofaunal variation was associated with hydrocarbon and bioturbation predictors. Taxon turnover between sites varied with only three out of 10 group pairs showing congruence (meiofauna-protists, meiofauna-macrofauna and protists-macrofauna). While our results support using eukaryotic taxa as proxies for others, the lack of congruence suggests caution should be applied to inferring wider indicator or functional interpretations from studies of a single biotic assemblage.


Asunto(s)
Bacterias/metabolismo , Ecosistema , Animales , Biodiversidad , Inglaterra , Contaminación Ambiental/análisis , Sedimentos Geológicos/química , Hidrocarburos/análisis , Filogenia , Análisis de Componente Principal
18.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010743

RESUMEN

Seawater contains dissolved 'free' DNA (dDNA) that is part of a larger <0.2 µm pool of DNA (D-DNA) including viruses and uncharacterised bound DNA. Previous studies have shown that bacterioplankton readily degrade dDNA, and culture-based approaches have identified several potential dDNA-utilising taxa. This study characterised the seasonal variation in D-DNA concentrations at Station L4, a coastal marine observatory in the Western English Channel, and linked changes in concentration to cognate physicochemical and biological factors. The impact of dDNA addition on active bacterioplankton communities at Station L4 was then determined using 16S rRNA high-throughput sequencing and RNA Stable Isotope Probing (RNA SIP) with 13C-labelled diatom-derived dDNA. Compared to other major bacterioplankton orders, the Rhodobacterales actively responded to dDNA additions in amended microcosms and RNA SIP identified two Rhodobacterales populations most closely associated with the genera Halocynthiibacter and Sulfitobacter that assimilated the 13C-labelled dDNA. Here we demonstrate that dDNA is a source of dissolved organic carbon for some members of the major bacterioplankton group the Marine Roseobacter Clade. This study enhances our understanding of roles of specific bacterioplankton taxa in dissolved organic matter cycling in coastal waters with potential implications for nitrogen and phosphorus regeneration processes.


Asunto(s)
ADN/metabolismo , Plancton/metabolismo , Rhodobacteraceae/metabolismo , Agua de Mar/microbiología , Carbono/química , Carbono/metabolismo , ADN/química , Diatomeas/química , Plancton/clasificación , Plancton/genética , Plancton/aislamiento & purificación , ARN Ribosómico 16S/genética , Rhodobacteraceae/clasificación , Rhodobacteraceae/genética , Rhodobacteraceae/aislamiento & purificación , Estaciones del Año , Agua de Mar/química
19.
Ecol Lett ; 21(5): 713-723, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29536604

RESUMEN

Partitioning of soil phosphorus (P) pools has been proposed as a key mechanism maintaining plant diversity, but experimental support is lacking. Here, we provided different chemical forms of P to 15 tree species with contrasting root symbiotic relationships to investigate plant P acquisition in both tropical and subtropical forests. Both ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees responded positively to addition of inorganic P, but strikingly, ECM trees acquired more P from a complex organic form (phytic acid). Most ECM tree species and all AM tree species also showed some capacity to take up simple organic P (monophosphate). Mycorrhizal colonisation was negatively correlated with soil extractable P concentration, suggesting that mycorrhizal fungi may regulate organic P acquisition among tree species. Our results support the hypothesis that ECM and AM plants partition soil P sources, which may play an ecologically important role in promoting species coexistence in tropical and subtropical forests.


Asunto(s)
Micorrizas , Suelo , Árboles , Bosques , Fósforo , Raíces de Plantas , Suelo/química
20.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28878056

RESUMEN

Temperature variability is a major driver of ecological pattern, with recent changes in average and extreme temperatures having significant impacts on populations, communities and ecosystems. In the marine realm, very few experiments have manipulated temperature in situ, and current understanding of temperature effects on community dynamics is limited. We developed new technology for precise seawater temperature control to examine warming effects on communities of bacteria, microbial eukaryotes (protists) and metazoans. Despite highly contrasting phylogenies, size spectra and diversity levels, the three community types responded similarly to seawater warming treatments of +3°C and +5°C, highlighting the critical and overarching importance of temperature in structuring communities. Temperature effects were detectable at coarse taxonomic resolutions and many taxa responded positively to warming, leading to increased abundances at the community-level. Novel field-based experimental approaches are essential to improve mechanistic understanding of how ocean warming will alter the structure and functioning of diverse marine communities.


Asunto(s)
Biota , Ecosistema , Agua de Mar , Temperatura , Animales , Bacterias/clasificación , Filogenia , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...