Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 14(11)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37999072

RESUMEN

Modern lipidomics has the power and sensitivity to elucidate the role of insects' lipidomes in their adaptations to the environment at a mechanistic molecular level. However, few lipidomic studies have yet been conducted on insects beyond model species such as Drosophila melanogaster. Here, we present the lipidome of adult males of another higher dipteran frugivore, Bactrocera tryoni. We describe 421 lipids across 15 classes of ester neutral lipids and phospholipids and ether neutral lipids and phospholipids. Most of the lipids are specified in terms of the carbon and double bond contents of each constituent hydrocarbon chain, and more ether lipids are specified to this degree than in any previous insect lipidomic analyses. Class-specific profiles of chain length and (un)saturation are broadly similar to those reported in D. melanogaster, although we found fewer medium-length chains in ether lipids. The high level of chain specification in our dataset also revealed widespread non-random combinations of different chain types in several ester lipid classes, including deficits of combinations involving chains of the same carbon and double bond contents among four phospholipid classes and excesses of combinations of dissimilar chains in several classes. Large differences were also found in the length and double bond profiles of the acyl vs. alkyl or alkenyl chains of the ether lipids. Work on other organisms suggests some of the differences observed will be functionally consequential and mediated, at least in part, by differences in substrate specificity among enzymes in lipid synthesis and remodelling pathways. Interrogation of the B. tryoni genome showed it has comparable levels of diversity overall in these enzymes but with some gene gain/loss differences and considerable sequence divergence from D. melanogaster.

2.
Mar Drugs ; 19(7)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34356807

RESUMEN

The Labyrinthulomycetes or Labyrinthulea are a class of protists that produce a network of filaments that enable the cells to glide along and absorb nutrients. One of the main two Labyrinthulea groups is the thraustochytrids, which are becoming an increasingly recognised and commercially used alternate source of long-chain (LC, ≥C20) omega-3 containing oils. This study demonstrates, to our knowledge for the first time, the regiospecificity of the triacylglycerol (TAG) fraction derived from Australian thraustochytrid Aurantiochytrium sp. strain TC 20 obtained using 13C nuclear magnetic resonance spectroscopy (13C NMR) analysis. The DHA present in the TC 20 TAG fraction was determined to be concentrated in the sn-2 position, with TAG (16:0/22:6/16:0) identified as the main species present. The sn-2 preference is similar to that found in salmon and tuna oil, and differs to seal oil containing largely sn-1,3 LC-PUFA. A higher concentration of sn-2 DHA occurred in the thraustochytrid TC 20 oil compared to that of tuna oil.


Asunto(s)
Grasas de la Dieta , Ácidos Docosahexaenoicos/química , Estramenopilos , Triglicéridos/química , Animales , Organismos Acuáticos , Australia , Imagen por Resonancia Magnética
3.
mSystems ; 5(3)2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32430409

RESUMEN

F420 is a low-potential redox cofactor used by diverse bacteria and archaea. In mycobacteria, this cofactor has multiple roles, including adaptation to redox stress, cell wall biosynthesis, and activation of the clinical antitubercular prodrugs pretomanid and delamanid. A recent biochemical study proposed a revised biosynthesis pathway for F420 in mycobacteria; it was suggested that phosphoenolpyruvate served as a metabolic precursor for this pathway, rather than 2-phospholactate as long proposed, but these findings were subsequently challenged. In this work, we combined metabolomic, genetic, and structural analyses to resolve these discrepancies and determine the basis of F420 biosynthesis in mycobacterial cells. We show that, in whole cells of Mycobacterium smegmatis, phosphoenolpyruvate rather than 2-phospholactate stimulates F420 biosynthesis. Analysis of F420 biosynthesis intermediates present in M. smegmatis cells harboring genetic deletions at each step of the biosynthetic pathway confirmed that phosphoenolpyruvate is then used to produce the novel precursor compound dehydro-F420-0. To determine the structural basis of dehydro-F420-0 production, we solved high-resolution crystal structures of the enzyme responsible (FbiA) in apo-, substrate-, and product-bound forms. These data show the essential role of a single divalent cation in coordinating the catalytic precomplex of this enzyme and demonstrate that dehydro-F420-0 synthesis occurs through a direct substrate transfer mechanism. Together, these findings resolve the biosynthetic pathway of F420 in mycobacteria and have significant implications for understanding the emergence of antitubercular prodrug resistance.IMPORTANCE Mycobacteria are major environmental microorganisms and cause many significant diseases, including tuberculosis. Mycobacteria make an unusual vitamin-like compound, F420, and use it to both persist during stress and resist antibiotic treatment. Understanding how mycobacteria make F420 is important, as this process can be targeted to create new drugs to combat infections like tuberculosis. In this study, we show that mycobacteria make F420 in a way that is different from other bacteria. We studied the molecular machinery that mycobacteria use to make F420, determining the chemical mechanism for this process and identifying a novel chemical intermediate. These findings also have clinical relevance, given that two new prodrugs for tuberculosis treatment are activated by F420.

4.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32198167

RESUMEN

Burkholderia sp. strain SG-MS1 and Pseudomonas sp. strain SG-MS2 have previously been found to mineralize (+)-pinoresinol through a common catabolic pathway. Here, we used comparative genomics, proteomics, protein semipurification, and heterologous expression to identify a flavoprotein from the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family in SG-MS2 that carries out the initial hydroxylation of (+)-pinoresinol at the benzylic carbon. The cognate gene is translationally coupled with a downstream cytochrome gene, and the cytochrome is required for activity. The flavoprotein has a unique combination of cofactor binding and cytochrome requirements for the VAO/PCMH family. The heterologously expressed enzyme has a Km of 1.17 µM for (+)-pinoresinol. The enzyme is overexpressed in strain SG-MS2 upon exposure to (+)-pinoresinol, along with 45 other proteins, 22 of which were found to be encoded by genes in an approximately 35.1-kb cluster also containing the flavoprotein and cytochrome genes. Homologs of 18 of these 22 genes, plus the flavoprotein and cytochrome genes, were also found in a 38.7-kb cluster in SG-MS1. The amino acid identities of four of the other proteins within the SG-MS2 cluster suggest they catalyze conversion of hydroxylated pinoresinol to protocatechuate and 2-methoxyhydroquinone. Nine other proteins upregulated in SG-MS2 on exposure to (+)-pinoresinol appear to be homologs of proteins known to comprise the protocatechuate and 2-methoxyhydroquinone catabolic pathways, but only three of the cognate genes lie within the cluster containing the flavoprotein and cytochrome genes.IMPORTANCE (+)-Pinoresinol is an important plant defense compound, a major food lignan for humans and some other animals, and the model compound used to study degradation of the ß-ß' linkages in lignin. We report a gene cluster, in one strain each of Pseudomonas and Burkholderia, that is involved in the oxidative catabolism of (+)-pinoresinol. The flavoprotein component of the α-hydroxylase which heads the pathway belongs to the 4-phenol oxidizing (4PO) subgroup of the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family but constitutes a novel combination of cofactor and electron acceptor properties for the family. It is translationally coupled with a cytochrome gene whose product is also required for activity. The work casts new light on the biology of (+)-pinoresinol and its transformation to other bioactive molecules. Potential applications of the findings include new options for deconstructing lignin into useful chemicals and the generation of new phytoestrogenic enterolactones from lignans.


Asunto(s)
Proteínas Bacterianas/genética , Flavoproteínas/genética , Furanos/metabolismo , Genes Bacterianos/genética , Lignanos/metabolismo , Pseudomonas/genética , Proteínas Bacterianas/metabolismo , Flavoproteínas/metabolismo , Redes y Vías Metabólicas , Familia de Multigenes , Oxidación-Reducción , Pseudomonas/metabolismo
5.
PLoS Pathog ; 16(2): e1008287, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32032366

RESUMEN

Our inability to predict which mutations could result in antibiotic resistance has made it difficult to rapidly identify the emergence of resistance, identify pre-existing resistant populations, and manage our use of antibiotics to effectively treat patients and prevent or slow the spread of resistance. Here we investigated the potential for resistance against the new antitubercular nitroimidazole prodrugs pretomanid and delamanid to emerge in Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). Deazaflavin-dependent nitroreductase (Ddn) is the only identified enzyme within M. tuberculosis that activates these prodrugs, via an F420H2-dependent reaction. We show that the native menaquinone-reductase activity of Ddn is essential for emergence from hypoxia, which suggests that for resistance to spread and pose a threat to human health, the native activity of Ddn must be at least partially retained. We tested 75 unique mutations, including all known sequence polymorphisms identified among ~15,000 sequenced M. tuberculosis genomes. Several mutations abolished pretomanid and delamanid activation in vitro, without causing complete loss of the native activity. We confirmed that a transmissible M. tuberculosis isolate from the hypervirulent Beijing family already possesses one such mutation and is resistant to pretomanid, before being exposed to the drug. Notably, delamanid was still effective against this strain, which is consistent with structural analysis that indicates delamanid and pretomanid bind to Ddn differently. We suggest that the mutations identified in this work be monitored for informed use of delamanid and pretomanid treatment and to slow the emergence of resistance.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas , Farmacorresistencia Bacteriana , Mutación , Mycobacterium tuberculosis , Nitroimidazoles/farmacología , Nitrorreductasas , Oxazoles/farmacología , Ingeniería de Proteínas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , Polimorfismo Genético
6.
Toxins (Basel) ; 11(5)2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31072027

RESUMEN

Aflatoxins are carcinogenic secondary metabolites of fungi that contaminate many staple crops and foods. Aflatoxin contamination is a worldwide problem, especially in developing countries, posing health hazards, e.g., causing aflatoxicosis and hepatocellular carcinoma, and even death. Biological solutions for aflatoxin detoxification are environmentally friendly and a cheaper alternative than chemical methods. The aims of the current study were to investigate: (1) the ability of MSMEG_5998, an aflatoxin-degrading F420H2-dependent reductase from Mycobacterium smegmatis, to degrade aflatoxin B1 (AFB1) and reduce AFB1-caused damage in HepG2 cell culture model; and (2) whether a thioredoxin (Trx) linkage of MSMEG_5998 enhanced the enzyme activity. We show that Trx-linked MSMEG_5998 degraded 63% AFB1 and native MSMEG_5998 degraded 31% after 4 h at 22 °C, indicating that the Trx-linked enzyme had a better AFB1-degrading ability. In a HepG2 cell culture model, Trx-linked MSMEG_5998 reduced DNA damage and p53-mediated apoptosis caused by AFB1 to a greater extent than the native enzyme. These findings suggest that Trx-linked MSMEG_5998 could potentially be developed to protect the liver from AFB1 damage, or as a candidate protein to reduce AFB1-related toxicity in animals.


Asunto(s)
Aflatoxinas/toxicidad , Mycobacterium smegmatis/enzimología , Oxidorreductasas/farmacología , Sustancias Protectoras/farmacología , Apoptosis/efectos de los fármacos , Daño del ADN , Estabilidad de Enzimas , Células Hep G2 , Humanos , Proteínas Recombinantes/farmacología
7.
Plant Biotechnol J ; 17(1): 220-232, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29873878

RESUMEN

Synthesis and accumulation of the storage lipid triacylglycerol in vegetative plant tissues has emerged as a promising strategy to meet the world's future need for vegetable oil. Sorghum (Sorghum bicolor) is a particularly attractive target crop given its high biomass, drought resistance and C4 photosynthesis. While oilseed-like triacylglycerol levels have been engineered in the C3 model plant tobacco, progress in C4 monocot crops has been lagging behind. In this study, we report the accumulation of triacylglycerol in sorghum leaf tissues to levels between 3 and 8.4% on a dry weight basis depending on leaf and plant developmental stage. This was achieved by the combined overexpression of genes encoding the Zea mays WRI1 transcription factor, Umbelopsis ramanniana UrDGAT2a acyltransferase and Sesamum indicum Oleosin-L oil body protein. Increased oil content was visible as lipid droplets, primarily in the leaf mesophyll cells. A comparison between a constitutive and mesophyll-specific promoter driving WRI1 expression revealed distinct changes in the overall leaf lipidome as well as transitory starch and soluble sugar levels. Metabolome profiling uncovered changes in the abundance of various amino acids and dicarboxylic acids. The results presented here are a first step forward towards the development of sorghum as a dedicated biomass oil crop and provide a basis for further combinatorial metabolic engineering.


Asunto(s)
Lípidos/biosíntesis , Hojas de la Planta/metabolismo , Aceites de Plantas/análisis , Sorghum/metabolismo , Aminoácidos/análisis , Aminoácidos/metabolismo , Metabolismo de los Lípidos , Lípidos/análisis , Hojas de la Planta/química , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Sorghum/química , Almidón/análisis , Almidón/metabolismo , Triglicéridos/metabolismo , Regulación hacia Arriba
8.
Plant Physiol ; 179(1): 124-142, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30381317

RESUMEN

Plants use several pathways to synthesize phosphatidylcholine (PC), the major phospholipid of eukaryotic cells. PC has important structural and signaling roles. One pathway plants use for synthesis is the phospho-base methylation pathway, which forms the head-group phosphocholine through the triple methylation of phosphoethanolamine (PEA) catalyzed by phosphoethanolamine N-methyltransferases (PEAMTs). Our understanding of that pathway and its physiological importance remains limited. We recently reported that disruption of Arabidopsis thaliana PEAMT1/NMT1 and PEAMT3/NMT3 induces severe PC deficiency leading to dwarfism and impaired development. However, the double nmt1 nmt3 knock-out mutant is viable. Here, we show that this is enabled by residual PEAMT activity through a third family member, NMT2. The triple nmt1 nmt2 nmt3 knock-out mutant cannot synthesize PC from PEA and is lethal. This shows that, unlike mammals and yeast, Arabidopsis cannot form PC from phosphatidyl ethanolamine (PE), and demonstrates that methylation of PEA is the sole, and vital, entry point to PC synthesis. We further show that Arabidopsis has evolved an expanded family of four nonredundant PEAMTs through gene duplication and alternate use of the NMT2 promoter. NMT2 encodes two PEAMT variants, which greatly differ in their ability to perform the initial phospho-base methylation of PEA. Five amino acids at the N terminus of PEAMTs are shown to each be critical for the catalysis of that step committing to PC synthesis. As a whole, these findings open new avenues for enzymatic engineering and the exploration of ways to better tune phosphocholine and PC synthesis to environmental conditions for improved plant performance.


Asunto(s)
Aciltransferasas/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Metiltransferasas/fisiología , Aciltransferasas/genética , Aciltransferasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Metiltransferasas/genética , Metiltransferasas/metabolismo , Fosfatidilcolinas/biosíntesis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiología , Alineación de Secuencia
9.
J Chromatogr A ; 1572: 100-105, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30180990

RESUMEN

Lysophosphatidic acid acyltransferases (LPAAT) play an essential role in generating phosphatidic acid (PA), a key intermediate for phospholipids and triacylglycerol synthesis. The individual members have a diversity of localisation, and a strong fatty acid substrate preference. In vitro LPAAT enzymatic activity assays are necessary for understanding the physiological function of these enzymes. In this work, we have developed a liquid chromatography-mass spectrometry (LC-MS) based rapid enzymatic assay without using radioactive labelling. We show that this approach is comparable to radioactive labelling assays, using either native or non-native lysophosphatidic acid receiver molecules. Most importantly, this approach can be applied to the comparison of multiple substrates in a single assay. The approach is also adaptable for other lipid enzymatic assays.


Asunto(s)
Aciltransferasas/metabolismo , Espectrometría de Masas/métodos , Radioisótopos de Carbono/química , Cromatografía Líquida de Alta Presión , Pruebas de Enzimas , Ácidos Grasos/análisis , Glicerofosfatos/química , Glicerofosfatos/metabolismo , Marcaje Isotópico , Especificidad por Sustrato
10.
Front Plant Sci ; 9: 1234, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186303

RESUMEN

Metabolic engineering of the omega-3 (ω3) long chain polyunsaturated fatty acid biosynthesis pathway has generated fish oil-like levels of pharmaceutically and nutritionally important docosahexaenoic acid (DHA) in plant seeds. However, the majority of DHA has been accumulated at the sn-1 and sn-3 positions of triacylglycerol (TAG) in these engineered seeds, leaving only a minor amount (∼10%) at sn-2 position and indicating a strong discrimination (or, a very poor specificity) for DHA by seed lysophosphatidic acid acyltransferases (LPAATs), which mediate the acylation of sn-2 position of glycerol backbone. In order to increase the level of DHA at sn-2 position of TAG and to increase overall DHA level in seeds, we attempted to discover DHA-preferring LPAATs. Several LPAATs for acylation of the sn-2 position of the TAG glycerol backbone were investigated for substrate preference for DHA. In transiently expressing these LPAATs in Nicotiana benthamiana, a Mortierella alpina LPAAT had the highest substrate specificity for accumulating DHA onto oleoyl-lysophosphatidic acid (oleoyl-LPA), while the plant LPAATs tested showed lower preference for DHA. In a competition assay with a pool of four ω3 acyl-Coenzyme A (CoA) substrates involved in the DHA biosynthesis pathway, LPAATs from both M. alpina and Emiliania huxleyi showed a high preference for DHA-CoA acylation onto oleoyl-LPA. When docosahexaenoyl-LPA was used as the acyl receiver, M. alpina LPAAT also showed a high preference for DHA-CoA. Stable overexpression of M. alpina LPAAT in an Arabidopsis line that expressed the DHA biosynthesis pathway significantly increased both the total DHA levels and the distribution of DHA onto the sn-2 position of seed TAG. LC-MS analysis of the seed TAG species also confirmed that overexpression of M. alpina LPAAT increased di-DHA and tri-DHA TAGs, suggesting that the M. alpina LPAAT could enrich DHA at the TAG sn-2 position, leading to a metabolic engineering of oil seed for channeling DHA into the sn-2 position of TAG and to a higher DHA level.

11.
Plant Physiol ; 177(4): 1605-1628, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29777000

RESUMEN

Phosphatidylcholine (PC) is a major membrane phospholipid and a precursor for major signaling molecules. Understanding its synthesis is important for improving plant growth, nutritional value, and resistance to stress. PC synthesis is complex, involving several interconnected pathways, one of which proceeds from serine-derived phosphoethanolamine to form phosphocholine through three sequential phospho-base methylations catalyzed by phosphoethanolamine N-methyltransferases (PEAMTs). The contribution of this pathway to the production of PC and plant growth has been a matter of some debate. Although a handful of individual PEAMTs have been described, there has not been any in planta investigation of a PEAMT family. Here, we provide a comparative functional analysis of two Arabidopsis (Arabidopsis thaliana) PEAMTs, NMT1 and the little known NMT3. Analysis of loss-of-function mutants demonstrates that NMT1 and NMT3 synergistically regulate PC homeostasis, phase transition at the shoot apex, coordinated organ development, and fertility through overlapping but also specific functions. The nmt1 nmt3 double mutant shows extensive sterility, drastically reduced PC concentrations, and altered lipid profiles. These findings demonstrate that the phospho-base methylation pathway makes a major contribution to PC synthesis in Arabidopsis and that NMT1 and NMT3 play major roles in its catalysis and the regulation of PC homeostasis as well as in plant growth and reproduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Metabolismo de los Lípidos , Metiltransferasas/metabolismo , Proteínas de Arabidopsis/genética , Etanolaminas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Homeostasis/fisiología , Metiltransferasas/genética , Morfogénesis , Mutación , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Fosforilcolina/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo
12.
Plant Biotechnol J ; 16(10): 1788-1796, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29509999

RESUMEN

Vegetable oils extracted from oilseeds are an important component of foods, but are also used in a range of high value oleochemical applications. Despite being biodegradable, nontoxic and renewable current plant oils suffer from the presence of residual polyunsaturated fatty acids that are prone to free radical formation that limit their oxidative stability, and consequently shelf life and functionality. Many decades of plant breeding have been successful in raising the oleic content to ~90%, but have come at the expense of overall field performance, including poor yields. Here, we engineer superhigh oleic (SHO) safflower producing a seed oil with 93% oleic generated from seed produced in multisite field trials spanning five generations. SHO safflower oil is the result of seed-specific hairpin-based RNA interference of two safflower lipid biosynthetic genes, FAD2.2 and FATB, producing seed oil containing less than 1.5% polyunsaturates and only 4% saturates but with no impact on lipid profiles of leaves and roots. Transgenic SHO events were compared to non-GM safflower in multisite trial plots with a wide range of growing season conditions, which showed no evidence of impact on seed yield. The oxidative stability of the field-grown SHO oil produced from various sites was 50 h at 110°C compared to 13 h for conventional ~80% oleic safflower oils. SHO safflower produces a uniquely stable vegetable oil across different field conditions that can provide the scale of production that is required for meeting the global demands for high stability oils in food and the oleochemical industry.


Asunto(s)
Carthamus tinctorius/metabolismo , Ácidos Oléicos/metabolismo , Interferencia de ARN , Aceite de Cártamo/química , Semillas/metabolismo , Carthamus tinctorius/genética , Oxidación-Reducción
13.
PLoS One ; 12(11): e0184183, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29112947

RESUMEN

Carbon-carbon bond formation is one of the most challenging reactions in synthetic organic chemistry, and aldol reactions catalysed by dihydroxyacetone phosphate-dependent aldolases provide a powerful biocatalytic tool for combining C-C bond formation with the generation of two new stereo-centres, with access to all four possible stereoisomers of a compound. Dihydroxyacetone phosphate (DHAP) is unstable so the provision of DHAP for DHAP-dependent aldolases in biocatalytic processes remains complicated. Our research has investigated the efficiency of several different enzymatic cascades for the conversion of glycerol to DHAP, including characterising new candidate enzymes for some of the reaction steps. The most efficient cascade for DHAP production, comprising a one-pot four-enzyme reaction with glycerol kinase, acetate kinase, glycerophosphate oxidase and catalase, was coupled with a DHAP-dependent fructose-1,6-biphosphate aldolase enzyme to demonstrate the production of several rare chiral sugars. The limitation of batch biocatalysis for these reactions and the potential for improvement using kinetic modelling and flow biocatalysis systems is discussed.


Asunto(s)
Acetato Quinasa/metabolismo , Catalasa/metabolismo , Dihidroxiacetona Fosfato/metabolismo , Glicerol Quinasa/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Azúcares/síntesis química , Biocatálisis , Cromatografía Líquida de Alta Presión , Estereoisomerismo , Azúcares/química
14.
Tetrahedron Lett ; 58(11): 1053-1056, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28966402

RESUMEN

The naturally occurring polybrominated indoles 2,2',5,5'-tetrabromo-3,3'-bi-1H-indole, 2,2',6,6'-tetrabromo-3,3'-bi-1H-indole, and 2,2',5,5',6,6'-hexabromo-3,3'-bi-1H-indole were synthesized using a palladium catalyzed, carbon monoxide mediated, double reductive N-heterocyclization of 2,3-bis(2-nitro-4(or 5)-bromophenyl)-1,4-butadienes as the key step.

15.
Front Plant Sci ; 8: 1339, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824675

RESUMEN

Lipid droplets (LDs) are composed of a monolayer of phospholipids (PLs), surrounding a core of non-polar lipids that consist mostly of triacylglycerols (TAGs) and to a lesser extent diacylglycerols. In this study, lipidome analysis illustrated striking differences in non-polar lipids and PL species between LDs derived from Triadica sebifera seed kernels and mesocarp. In mesocarp LDs, the most abundant species of TAG contained one C18:1 and two C16:0 and fatty acids, while TAGs containing three C18 fatty acids with higher level of unsaturation were dominant in the seed kernel LDs. This reflects the distinct differences in fatty acid composition of mesocarp (palmitate-rich) and seed-derived oil (α-linoleneate-rich) in T. sebifera. Major PLs in seed LDs were found to be rich in polyunsaturated fatty acids, in contrast to those with relatively shorter carbon chain and lower level of unsaturation in mesocarp LDs. The LD proteome analysis in T. sebifera identified 207 proteins from mesocarp, and 54 proteins from seed kernel, which belong to various functional classes including lipid metabolism, transcription and translation, trafficking and transport, cytoskeleton, chaperones, and signal transduction. Oleosin and lipid droplets associated proteins (LDAP) were found to be the predominant proteins associated with LDs in seed and mesocarp tissues, respectively. We also show that LDs appear to be in close proximity to a number of organelles including the endoplasmic reticulum, mitochondria, peroxisomes, and Golgi apparatus. This comparative study between seed and mesocarp LDs may shed some light on the structure of plant LDs and improve our understanding of their functionality and cellular metabolic networks in oleaginous plant tissues.

16.
Front Microbiol ; 8: 1000, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28620367

RESUMEN

An unusual aspect of actinobacterial metabolism is the use of the redox cofactor F420. Studies have shown that actinobacterial F420H2-dependent reductases promiscuously hydrogenate diverse organic compounds in biodegradative and biosynthetic processes. These enzymes therefore represent promising candidates for next-generation industrial biocatalysts. In this work, we undertook the first broad survey of these enzymes as potential industrial biocatalysts by exploring the extent, as well as mechanistic and structural bases, of their substrate promiscuity. We expressed and purified 11 enzymes from seven subgroups of the flavin/deazaflavin oxidoreductase (FDOR) superfamily (A1, A2, A3, B1, B2, B3, B4) from the model soil actinobacterium Mycobacterium smegmatis. These enzymes reduced compounds from six chemical classes, including fundamental monocycles such as a cyclohexenone, a dihydropyran, and pyrones, as well as more complex quinone, coumarin, and arylmethane compounds. Substrate range and reduction rates varied between the enzymes, with the A1, A3, and B1 groups exhibiting greatest promiscuity. Molecular docking studies suggested that structurally diverse compounds are accommodated in the large substrate-binding pocket of the most promiscuous FDOR through hydrophobic interactions with conserved aromatic residues and the isoalloxazine headgroup of F420H2. Liquid chromatography-mass spectrometry (LC/MS) and gas chromatography-mass spectrometry (GC/MS) analysis of derivatized reaction products showed reduction occurred through a common mechanism involving hydride transfer from F420H- to the electron-deficient alkene groups of substrates. Reduction occurs when the hydride donor (C5 of F420H-) is proximal to the acceptor (electrophilic alkene of the substrate). These findings suggest that engineered actinobacterial F420H2-dependent reductases are promising novel biocatalysts for the facile transformation of a wide range of α,ß-unsaturated compounds.

17.
Plant Biotechnol J ; 15(11): 1397-1408, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28301719

RESUMEN

Medium-chain fatty acids (MCFA, C6-14 fatty acids) are an ideal feedstock for biodiesel and broader oleochemicals. In recent decades, several studies have used transgenic engineering to produce MCFA in seeds oils, although these modifications result in unbalance membrane lipid profiles that impair oil yields and agronomic performance. Given the ability to engineer nonseed organs to produce oils, we have previously demonstrated that MCFA profiles can be produced in leaves, but this also results in unbalanced membrane lipid profiles and undesirable chlorosis and cell death. Here we demonstrate that the introduction of a diacylglycerol acyltransferase from oil palm, EgDGAT1, was necessary to channel nascent MCFA directly into leaf oils and therefore bypassing MCFA residing in membrane lipids. This pathway resulted in increased flux towards MCFA rich leaf oils, reduced MCFA in leaf membrane lipids and, crucially, the alleviation of chlorosis. Deep sequencing of African oil palm (Elaeis guineensis) and coconut palm (Cocos nucifera) generated candidate genes of interest, which were then tested for their ability to improve oil accumulation. Thioesterases were explored for the production of lauric acid (C12:0) and myristic (C14:0). The thioesterases from Umbellularia californica and Cinnamomum camphora produced a total of 52% C12:0 and 40% C14:0, respectively, in transient leaf assays. This study demonstrated that the introduction of a complete acyl-CoA-dependent pathway for the synthesis of MFCA-rich oils avoided disturbing membrane homoeostasis and cell death phenotypes. This study outlines a transgenic strategy for the engineering of biomass crops with high levels of MCFA rich leaf oils.


Asunto(s)
Arecaceae/genética , Arecaceae/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Ácidos Grasos/metabolismo , Hojas de la Planta/metabolismo , Aceites de Plantas/metabolismo , Arabidopsis/genética , Arecaceae/enzimología , Biomasa , Muerte Celular , Cinnamomum camphora/genética , Cocos/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Láuricos/metabolismo , Metabolismo de los Lípidos , Lípidos de la Membrana/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma , Triglicéridos
18.
Metab Eng ; 39: 237-246, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27993560

RESUMEN

Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a previously established Nicotiana tabacum line, accumulating up to 15% (dry weight) of the storage lipid triacylglycerol in leaf tissue. To overcome this metabolic bottleneck, we either silenced the SDP1 lipase or overexpressed the Arabidopsis thaliana LEC2 transcription factor in this transgenic background. Both strategies independently resulted in the accumulation of 30-33% triacylglycerol in leaf tissues. Our results demonstrate that the combined optimization of de novo fatty acid biosynthesis, storage lipid assembly and lipid turnover in leaf tissue results in a major overhaul of the plant central carbon allocation and lipid metabolism. The resulting further step changes in oil accumulation in the entire plant biomass offers the possibility of delivering yields that outperform current oilseed crops.


Asunto(s)
Mejoramiento Genético/métodos , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/fisiología , Nicotiana/fisiología , Hojas de la Planta/fisiología , Aceites de Plantas/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Aceites de Plantas/aislamiento & purificación , Factores de Transcripción/genética
19.
ISME J ; 11(1): 125-137, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27505347

RESUMEN

F420 is a low-potential redox cofactor that mediates the transformations of a wide range of complex organic compounds. Considered one of the rarest cofactors in biology, F420 is best known for its role in methanogenesis and has only been chemically identified in two phyla to date, the Euryarchaeota and Actinobacteria. In this work, we show that this cofactor is more widely distributed than previously reported. We detected the genes encoding all five known F420 biosynthesis enzymes (cofC, cofD, cofE, cofG and cofH) in at least 653 bacterial and 173 archaeal species, including members of the dominant soil phyla Proteobacteria, Chloroflexi and Firmicutes. Metagenome datamining validated that these genes were disproportionately abundant in aerated soils compared with other ecosystems. We confirmed through high-performance liquid chromatography analysis that aerobically grown stationary-phase cultures of three bacterial species, Paracoccus denitrificans, Oligotropha carboxidovorans and Thermomicrobium roseum, synthesized F420, with oligoglutamate sidechains of different lengths. To understand the evolution of F420 biosynthesis, we also analyzed the distribution, phylogeny and genetic organization of the cof genes. Our data suggest that although the Fo precursor to F420 originated in methanogens, F420 itself was first synthesized in an ancestral actinobacterium. F420 biosynthesis genes were then disseminated horizontally to archaea and other bacteria. Together, our findings suggest that the cofactor is more significant in aerobic bacterial metabolism and soil ecosystem composition than previously thought. The cofactor may confer several competitive advantages for aerobic soil bacteria by mediating their central metabolic processes and broadening the range of organic compounds they can synthesize, detoxify and mineralize.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Coenzimas/biosíntesis , Metano/metabolismo , Microbiología del Suelo , Aerobiosis , Archaea/clasificación , Archaea/enzimología , Archaea/aislamiento & purificación , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bacterias/clasificación , Bacterias/enzimología , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Coenzimas/genética , Ecosistema , Metagenoma , Oxidación-Reducción , Filogenia , Suelo/química
20.
Appl Environ Microbiol ; 82(23): 6810-6818, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27637879

RESUMEN

A defining feature of mycobacterial redox metabolism is the use of an unusual deazaflavin cofactor, F420 This cofactor enhances the persistence of environmental and pathogenic mycobacteria, including after antimicrobial treatment, although the molecular basis for this remains to be understood. In this work, we explored our hypothesis that F420 enhances persistence by serving as a cofactor in antimicrobial-detoxifying enzymes. To test this, we performed a series of phenotypic, biochemical, and analytical chemistry studies in relation to the model soil bacterium Mycobacterium smegmatis Mutant strains unable to synthesize or reduce F420 were found to be more susceptible to a wide range of antibiotic and xenobiotic compounds. Compounds from three classes of antimicrobial compounds traditionally resisted by mycobacteria inhibited the growth of F420 mutant strains at subnanomolar concentrations, namely, furanocoumarins (e.g., methoxsalen), arylmethanes (e.g., malachite green), and quinone analogues (e.g., menadione). We demonstrated that promiscuous F420H2-dependent reductases directly reduce these compounds by a mechanism consistent with hydride transfer. Moreover, M. smegmatis strains unable to make F420H2 lost the capacity to reduce and detoxify representatives of the furanocoumarin and arylmethane compound classes in whole-cell assays. In contrast, mutant strains were only slightly more susceptible to clinical antimycobacterials, and this appeared to be due to indirect effects of F420 loss of function (e.g., redox imbalance) rather than loss of a detoxification system. Together, these data show that F420 enhances antimicrobial resistance in mycobacteria and suggest that one function of the F420H2-dependent reductases is to broaden the range of natural products that mycobacteria and possibly other environmental actinobacteria can reductively detoxify.IMPORTANCE This study reveals that a unique microbial cofactor, F420, is critical for antimicrobial resistance in the environmental actinobacterium Mycobacterium smegmatis We show that a superfamily of redox enzymes, the F420H2-dependent reductases, can reduce diverse antimicrobials in vitro and in vivoM. smegmatis strains unable to make or reduce F420 become sensitive to inhibition by these antimicrobial compounds. This suggests that mycobacteria have harnessed the unique properties of F420 to reduce structurally diverse antimicrobials as part of the antibiotic arms race. The F420H2-dependent reductases that facilitate this process represent a new class of antimicrobial-detoxifying enzymes with potential applications in bioremediation and biocatalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...