Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Cytotherapy ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38625071

RESUMEN

With investigators looking to expand engineered T cell therapies such as CAR-T to new tumor targets and patient populations, a variety of cell manufacturing platforms have been developed to scale manufacturing capacity using closed and/or automated systems. Such platforms are particularly useful for solid tumor targets, which typically require higher CAR-T cell doses. Although T cell phenotype and function are key attributes that often correlate with therapeutic efficacy, how manufacturing platforms influence the final CAR-T cell product is currently unknown. We compared 4 commonly used T cell manufacturing platforms (CliniMACS Prodigy, Xuri W25 rocking platform, G-Rex gas-permeable bioreactor, static bag culture) using identical media, stimulation, culture length, and donor starting material. Selected CD4+CD8+ cells were transduced with lentiviral vector incorporating a CAR targeting FGFR4, a promising target for pediatric sarcoma. We observed significant differences in overall expansion over the 14-day culture; bag cultures had the highest capacity for expansion while the Prodigy had the lowest (481-fold versus 84-fold, respectively). Strikingly, we also observed considerable differences in the phenotype of the final product, with the Prodigy significantly enriched for CCR7+CD45RA+ naïve/stem central memory (Tn/scm)-like cells at 46% compared to bag and G-Rex with 16% and 13%, respectively. Gene expression analysis also showed that Prodigy CAR-Ts are more naïve, less cytotoxic and less exhausted than bag, G-Rex, and Xuri CAR-Ts, and pointed to differences in cell metabolism that were confirmed via metabolic assays. We hypothesized that dissolved oxygen level, which decreased substantially during the final 3 days of the Prodigy culture, may contribute to the observed differences in T cell phenotype. By culturing bag and G-Rex cultures in 1% O2 from day 5 onward, we could generate >60% Tn/scm-like cells, with longer time in hypoxia correlating with a higher percentage of Tn/scm-like cells. Intriguingly, our results suggest that oxygenation is responsible, at least in part, for observed differences in T cell phenotype among bioreactors and suggest hypoxic culture as a potential strategy prevent T cell differentiation during expansion. Ultimately, our study demonstrates that selection of bioreactor system may have profound effects not only on the capacity for expansion, but also on the differentiation state of the resulting CAR-T cells.

2.
Immunity ; 57(5): 1019-1036.e9, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38677292

RESUMEN

Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection. Single-cell transcriptional profiling revealed decreased expression of Hexokinase-2 in Tox2-deficient gut ILC3. Consistent with the requirement for hexokinases in glycolysis, Tox2-/- ILC3 displayed decreased ability to utilize glycolysis for protein translation. Ectopic expression of Hexokinase-2 rescued Tox2-/- gut ILC3 defects. Hypoxia and interleukin (IL)-17A each induced Tox2 expression in ILC3, suggesting a mechanism by which ILC3 adjusts to fluctuating environments by programming glycolytic metabolism. Our results reveal the requirement for Tox2 to support the metabolic adaptation of ILC3 within the gastrointestinal tract.


Asunto(s)
Citrobacter rodentium , Infecciones por Enterobacteriaceae , Glucólisis , Inmunidad Innata , Linfocitos , Ratones Noqueados , Animales , Ratones , Citrobacter rodentium/inmunología , Infecciones por Enterobacteriaceae/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Transactivadores/metabolismo , Transactivadores/genética , Hexoquinasa/metabolismo , Hexoquinasa/genética , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Interleucina-17/metabolismo , Adaptación Fisiológica/inmunología
3.
Mol Ther Methods Clin Dev ; 32(1): 101171, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38298420

RESUMEN

Chimeric antigen receptor T cells (CART) have demonstrated curative potential for hematological malignancies, but the optimal manufacturing has not yet been determined and may differ across products. The first step, T cell selection, removes contaminating cell types that can potentially suppress T cell expansion and transduction. While positive selection of CD4/CD8 T cells after leukapheresis is often used in clinical trials, it may modulate signaling cascades downstream of these co-receptors; indeed, the addition of a CD4/CD8-positive selection step altered CD22 CART potency and toxicity in patients. While negative selection may avoid this drawback, it is virtually absent from good manufacturing practices. Here, we performed both CD4/CD8-positive and -negative clinical scale selections of mononuclear cell apheresis products and generated CD22 CARTs per our ongoing clinical trial (NCT02315612NCT02315612). While the selection process did not yield differences in CART expansion or transduction, positively selected CART exhibited a significantly higher in vitro interferon-γ and IL-2 secretion but a lower in vitro tumor killing rate. Notably, though, CD22 CART generated from both selection protocols efficiently eradicated leukemia in NSG mice, with negatively selected cells exhibiting a significant enrichment in γδ CD22 CART. Thus, our study demonstrates the importance of the initial T cell selection process in clinical CART manufacturing.

4.
J Immunol ; 212(6): 1029-1039, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38284984

RESUMEN

Both identity and plasticity of CD4 T helper (Th) cells are regulated in part by epigenetic mechanisms. However, a method that reliably and readily profiles DNA base modifications is still needed to finely study Th cell differentiation. Cytosine methylation in CpG context (5mCpG) and cytosine hydroxymethylation (5hmCpG) are DNA modifications that identify stable cell phenotypes, but their potential to characterize intermediate cell transitions has not yet been evaluated. To assess transition states in Th cells, we developed a method to profile Th cell identity using Cas9-targeted single-molecule nanopore sequencing. Targeting as few as 10 selected genomic loci, we were able to distinguish major in vitro polarized murine T cell subtypes, as well as intermediate phenotypes, by their native DNA 5mCpG patterns. Moreover, by using off-target sequences, we were able to infer transcription factor activities relevant to each cell subtype. Detection of 5mCpG and 5hmCpG was validated on intestinal Th17 cells escaping transforming growth factor ß control, using single-molecule adaptive sampling. A total of 21 differentially methylated regions mapping to the 10-gene panel were identified in pathogenic Th17 cells relative to their nonpathogenic counterpart. Hence, our data highlight the potential to exploit native DNA methylation profiling to study physiological and pathological transition states of Th cells.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Animales , Ratones , Citosina , ADN/metabolismo , Células Th17/metabolismo
6.
Nat Immunol ; 24(12): 2121-2134, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37945821

RESUMEN

The T cell antigen receptor (TCR) contains ten immunoreceptor tyrosine-based activation motif (ITAM) signaling sequences distributed within six CD3 subunits; however, the reason for such structural complexity and multiplicity is unclear. Here we evaluated the effect of inactivating the three CD3ζ chain ITAMs on TCR signaling and T cell effector responses using a conditional 'switch' mouse model. Unexpectedly, we found that T cells expressing TCRs containing inactivated (non-signaling) CD3ζ ITAMs (6F-CD3ζ) exhibited reduced ability to discriminate between low- and high-affinity ligands, resulting in enhanced signaling and cytokine responses to low-affinity ligands because of a previously undetected inhibitory function of CD3ζ ITAMs. Also, 6F-CD3ζ TCRs were refractory to antagonism, as predicted by a new in silico adaptive kinetic proofreading model that revises the role of ITAM multiplicity in TCR signaling. Finally, T cells expressing 6F-CD3ζ displayed enhanced cytolytic activity against solid tumors expressing low-affinity ligands, identifying a new counterintuitive approach to TCR-mediated cancer immunotherapy.


Asunto(s)
Motivo de Activación del Inmunorreceptor Basado en Tirosina , Receptores de Antígenos de Linfocitos T , Animales , Ratones , Complejo CD3 , Ligandos , Péptidos , Linfocitos T
7.
Cancer Cell ; 41(11): 1841-1843, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37832553

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies are limited by antigen escape and on-target/off-tumor toxicity. In addressing these challenges, Haubner et al. develop an "IF-BETTER" strategy. Their combinatorial chimeric co-stimulatory receptor with an attenuated CAR enhances acute myeloid leukemia (AML) killing while protecting healthy progenitors, highlighting the potential to leverage cooperative CAR designs.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Inmunoterapia Adoptiva
8.
N Engl J Med ; 389(5): 470-471, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37530830

Asunto(s)
Cementerios , Timo , Humanos , Adulto
9.
Immunity ; 56(9): 2036-2053.e12, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572656

RESUMEN

Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies.


Asunto(s)
Arginasa , Gripe Humana , Animales , Humanos , Ratones , Arginasa/genética , Arginasa/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Glutamina , Cinética , Pulmón/metabolismo , Mamíferos
10.
Nat Immunol ; 24(9): 1434-1442, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37500886

RESUMEN

Cytotoxic T lymphocytes (CTLs) fight intracellular pathogens and cancer by identifying and destroying infected or transformed target cells1. To kill, CTLs form a specialized cytotoxic immune synapse (IS) with a target of interest and then release toxic perforin and granzymes into the interface to elicit programmed cell death2-5. The IS then dissolves, enabling CTLs to search for additional prey and professional phagocytes to clear the corpse6. While the mechanisms governing IS assembly have been studied extensively, far less is known about target cell release. Here, we applied time-lapse imaging to explore the basis for IS dissolution and found that it occurred concomitantly with the cytoskeletal contraction of apoptotic targets. Genetic and pharmacological perturbation of this contraction response indicated that it was both necessary and sufficient for CTL dissociation. We also found that mechanical amplification of apoptotic contractility promoted faster CTL detachment and serial killing. Collectively, these results establish a biophysical basis for IS dissolution and highlight the importance of mechanosensory feedback in the regulation of cell-cell interactions.


Asunto(s)
Apoptosis , Linfocitos T Citotóxicos , Apoptosis/genética , Perforina , Granzimas
11.
Proc Natl Acad Sci U S A ; 120(25): e2219431120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307458

RESUMEN

Gut microbiota imbalance (dysbiosis) is increasingly associated with pathological conditions, both within and outside the gastrointestinal tract. Intestinal Paneth cells are considered to be guardians of the gut microbiota, but the events linking Paneth cell dysfunction with dysbiosis remain unclear. We report a three-step mechanism for dysbiosis initiation. Initial alterations in Paneth cells, as frequently observed in obese and inflammatorybowel diseases patients, cause a mild remodeling of microbiota, with amplification of succinate-producing species. SucnR1-dependent activation of epithelial tuft cells triggers a type 2 immune response that, in turn, aggravates the Paneth cell defaults, promoting dysbiosis and chronic inflammation. We thus reveal a function of tuft cells in promoting dysbiosis following Paneth cell deficiency and an unappreciated essential role of Paneth cells in maintaining a balanced microbiota to prevent inappropriate activation of tuft cells and deleterious dysbiosis. This succinate-tuft cell inflammation circuit may also contribute to the chronic dysbiosis observed in patients.


Asunto(s)
Disbiosis , Membrana Mucosa , Humanos , Inflamación , Células de Paneth , Succinatos , Ácido Succínico
12.
Front Immunol ; 14: 1155883, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37313400

RESUMEN

Introduction: ZAP-70, a protein tyrosine kinase recruited to the T cell receptor (TCR), initiates a TCR signaling cascade upon antigen stimulation. Mutations in the ZAP70 gene cause a combined immunodeficiency characterized by low or absent CD8+ T cells and nonfunctional CD4+ T cells. Most deleterious missense ZAP70 mutations in patients are located in the kinase domain but the impact of mutations in the SH2 domains, regulating ZAP-70 recruitment to the TCR, are not well understood. Methods: Genetic analyses were performed on four patients with CD8 lymphopenia and a high resolution melting screening for ZAP70 mutations was developed. The impact of SH2 domain mutations was evaluated by biochemical and functional analyses as well as by protein modeling. Results and discussion: Genetic characterization of an infant who presented with pneumocystis pneumonia, mycobacterial infection, and an absence of CD8 T cells revealed a novel homozygous mutation in the C-terminal SH2 domain (SH2-C) of the ZAP70 gene (c.C343T, p.R170C). A distantly related second patient was found to be compound heterozygous for the R170C variant and a 13bp deletion in the ZAP70 kinase domain. While the R170C mutant was highly expressed, there was an absence of TCR-induced proliferation, associated with significantly attenuated TCR-induced ZAP-70 phosphorylation and a lack of binding of ZAP-70 to TCR-ζ. Moreover, a homozygous ZAP-70 R192W variant was identified in 2 siblings with combined immunodeficiency and CD8 lymphopenia, confirming the pathogenicity of this mutation. Structural modeling of this region revealed the critical nature of the arginines at positions 170 and 192, in concert with R190, forming a binding pocket for the phosphorylated TCR-ζ chain. Deleterious mutations in the SH2-C domain result in attenuated ZAP-70 function and clinical manifestations of immunodeficiency.


Asunto(s)
Linfopenia , Enfermedades de Inmunodeficiencia Primaria , Lactante , Humanos , Dominios Homologos src/genética , Proteínas Tirosina Quinasas , Arginina , Linfopenia/genética , Proteína Tirosina Quinasa ZAP-70/genética
13.
J Immunother Cancer ; 11(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37217245

RESUMEN

The expansion and persistence of chimeric antigen receptor (CAR) T-cells in patients are associated with response, toxicity, and long-term efficacy. As such, the tools used to detect CAR T-cells following infusion are fundamental for optimizing this therapeutic approach. Nevertheless, despite the critical value of this essential biomarker, there is significant variability in CAR T-cell detection methods as well as the frequency and intervals of testing. Furthermore, heterogeneity in the reporting of quantitative data adds layers of complexity that limit intertrial and interconstruct comparisons. We sought to assess the heterogeneity of CAR T-cell expansion and persistence data in a scoping review using the PRISMA-ScR checklist. Focusing on 21 clinical trials from the USA, featuring a Food and Drug Administration-approved CAR T-cell construct or one of its predecessors, 105 manuscripts were screened and 60 were selected for analysis, based on the inclusion of CAR T-cell expansion and persistence data. Across the array of CAR T-cell constructs, flow cytometry and quantitative PCR were identified as the two primary techniques for detecting CAR T-cells. However, despite apparent uniformity in detection techniques, the specific methods used were highly variable. Detection time points and the number of evaluated time points also ranged markedly and quantitative data were often not reported. To evaluate whether subsequent manuscripts from a trial resolved these issues, we analyzed all subsequent manuscripts reporting on the 21 clinical trials, recording all expansion and persistence data. While additional detection techniques-including droplet digital PCR, NanoString, and single-cell RNA sequencing-were reported in follow-up publications, inconsistencies with respect to detection time points and frequency remained, with a significant amount of quantitative data still not readily available. Our findings highlight the critical need to establish universal standards for reporting on CAR T-cell detection, especially in early phase studies. The current reporting of non-interconvertible metrics and limited provision of quantitative data make cross-trial and cross-CAR T-cell construct comparisons extremely challenging. Establishing a standardized approach for collecting and reporting data is urgently needed and would represent a substantial advancement in the ability to improve outcomes for patients receiving CAR T-cell therapies.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Linfocitos T , Humanos , Biomarcadores , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/genética , Estándares de Referencia , Estados Unidos
14.
Eur J Hum Genet ; 31(7): 749-760, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36977837

RESUMEN

The UK National Diagnostic Service for Ehlers-Danlos Syndromes (EDS) was established in 2009 for the rare types of EDS. Vascular EDS (vEDS) is an inherited connective tissue disorder caused by pathogenic variants in the COL3A1 gene. Associated tissue fragility affects multiple organ systems, increasing the risk of blood vessel dissection and rupture, with potentially fatal consequences. The diagnosis of vEDS has improved with advances in genetic testing, however this is most often suspected following an acute event. We provide data on the clinical features of vEDS for 180 patients (full cohort) seen in our service with confirmed molecular diagnoses. Increased awareness of this rare condition will prompt genetic testing essential to confirm the diagnosis. Outcomes are improved by early diagnosis followed by appropriate management. Fragile connective tissues make invasive procedures potentially dangerous, particularly in an emergency setting. Lifestyle advice from a young age can help acceptance and understanding of the diagnosis and inform choices. There is currently limited evidence for the use of drug therapy to reduce vascular events. We report on the incidence of vascular events in 126 patients (statistical analysis cohort) in our care and the use of medication. Our retrospective data showed that those patients on a long-term angiotensin II receptor blocker and/or beta-blocker had fewer vascular events than those not on cardiac medication who received the same lifestyle and emergency care advice.


Asunto(s)
Síndrome de Ehlers-Danlos Tipo IV , Síndrome de Ehlers-Danlos , Humanos , Estudios Retrospectivos , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/terapia , Pruebas Genéticas , Reino Unido , Colágeno Tipo III/genética
15.
Blood ; 141(19): 2316-2329, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-36790505

RESUMEN

Adeno-associated virus (AAV) vectors have been successfully exploited in gene therapy applications for the treatment of several genetic disorders. AAV is considered an episomal vector, but it has been shown to integrate within the host cell genome after the generation of double-strand DNA breaks or nicks. Although AAV integration raises some safety concerns, it can also provide therapeutic benefit; the direct intrathymic injection of an AAV harboring a therapeutic transgene results in integration in T-cell progenitors and long-term T-cell immunity. To assess the mechanisms of AAV integration, we retrieved and analyzed hundreds of AAV integration sites from lymph node-derived mature T cells and compared these with liver and brain tissue from treated mice. Notably, we found that although AAV integrations in the liver and brain were distributed across the entire mouse genome, >90% of the integrations in T cells were clustered within the T-cell receptor α, ß, and γ genes. More precisely, the insertion mapped to DNA breaks created by the enzymatic activity of recombination activating genes (RAGs) during variable, diversity, and joining recombination. Our data indicate that RAG activity during T-cell receptor maturation induces a site-specific integration of AAV genomes and opens new therapeutic avenues for achieving long-term AAV-mediated gene transfer in dividing cells.


Asunto(s)
Terapia Genética , Vectores Genéticos , Ratones , Animales , Vectores Genéticos/genética , Transgenes , Plásmidos , Terapia Genética/métodos , Receptores de Antígenos de Linfocitos T/genética , Dependovirus/genética , Integración Viral
16.
Blood ; 141(20): 2520-2536, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36735910

RESUMEN

Metabolic programs contribute to hematopoietic stem and progenitor cell (HSPC) fate, but it is not known whether the metabolic regulation of protein synthesis controls HSPC differentiation. Here, we show that SLC7A1/cationic amino acid transporter 1-dependent arginine uptake and its catabolism to the polyamine spermidine control human erythroid specification of HSPCs via the activation of the eukaryotic translation initiation factor 5A (eIF5A). eIF5A activity is dependent on its hypusination, a posttranslational modification resulting from the conjugation of the aminobutyl moiety of spermidine to lysine. Notably, attenuation of hypusine synthesis in erythroid progenitors, by the inhibition of deoxyhypusine synthase, abrogates erythropoiesis but not myeloid cell differentiation. Proteomic profiling reveals mitochondrial translation to be a critical target of hypusinated eIF5A, and accordingly, progenitors with decreased hypusine activity exhibit diminished oxidative phosphorylation. This affected pathway is critical for eIF5A-regulated erythropoiesis, as interventions augmenting mitochondrial function partially rescue human erythropoiesis under conditions of attenuated hypusination. Levels of mitochondrial ribosomal proteins (RPs) were especially sensitive to the loss of hypusine, and we find that the ineffective erythropoiesis linked to haploinsufficiency of RPS14 in chromosome 5q deletions in myelodysplastic syndrome is associated with a diminished pool of hypusinated eIF5A. Moreover, patients with RPL11-haploinsufficient Diamond-Blackfan anemia as well as CD34+ progenitors with downregulated RPL11 exhibit a markedly decreased hypusination in erythroid progenitors, concomitant with a loss of mitochondrial metabolism. Thus, eIF5A-dependent protein synthesis regulates human erythropoiesis, and our data reveal a novel role for RPs in controlling eIF5A hypusination in HSPCs, synchronizing mitochondrial metabolism with erythroid differentiation.


Asunto(s)
Proteómica , Espermidina , Humanos , Espermidina/metabolismo , Factores de Iniciación de Péptidos/genética , Diferenciación Celular , Factor 5A Eucariótico de Iniciación de Traducción
17.
Clin Cancer Res ; 29(2): 341-348, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36302175

RESUMEN

PURPOSE: Succinate dehydrogenase (dSDH)-deficient tumors, including pheochromocytoma/paraganglioma, hereditary leiomyomatosis and renal cell cancer-associated renal cell carcinoma (HLRCC-RCC), and gastrointestinal stromal tumors (GIST) without KIT or platelet-derived growth factor receptor alpha mutations are often resistant to cytotoxic chemotherapy, radiotherapy, and many targeted therapies. We evaluated guadecitabine, a dinucleotide containing the DNA methyltransferase inhibitor decitabine, in these patient populations. PATIENTS AND METHODS: Phase II study of guadecitabine (subcutaneously, 45 mg/m2/day for 5 consecutive days, planned 28-day cycle) to assess clinical activity (according to RECISTv.1.1) across three strata of patients with dSDH GIST, pheochromocytoma/paraganglioma, or HLRCC-RCC. A Simon optimal two-stage design (target response rate 30% rule out 5%) was used. Biologic correlates (methylation and metabolites) from peripheral blood mononuclear cells (PBMC), serum, and urine were analyzed. RESULTS: Nine patients (7 with dSDH GIST, 1 each with paraganglioma and HLRCC-RCC, 6 females and 3 males, age range 18-57 years) were enrolled. Two patients developed treatment-limiting neutropenia. No partial or complete responses were observed (range 1-17 cycles of therapy). Biologic activity assessed as global demethylation in PBMCs was observed. No clear changes in metabolite concentrations were observed. CONCLUSIONS: Guadecitabine was tolerated in patients with dSDH tumors with manageable toxicity. Although 4 of 9 patients had prolonged stable disease, there were no objective responses. Thus, guadecitabine did not meet the target of 30% response rate across dSDH tumors at this dose, although signs of biologic activity were noted.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Productos Biológicos , Carcinoma de Células Renales , Tumores del Estroma Gastrointestinal , Neoplasias Renales , Paraganglioma , Feocromocitoma , Masculino , Femenino , Adulto , Humanos , Niño , Adolescente , Adulto Joven , Persona de Mediana Edad , Succinato Deshidrogenasa/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Tumores del Estroma Gastrointestinal/genética , Leucocitos Mononucleares/metabolismo , Paraganglioma/tratamiento farmacológico , Paraganglioma/genética
18.
Cell Stem Cell ; 29(10): 1421-1423, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36206727

RESUMEN

Fibrosis, the pathological end stage of chronic inflammatory diseases, results from extracellular matrix deposition by fibrogenic fibroblasts. In this issue of Cell Stem Cell, Sobecki et al. (2022) develop a novel vaccination-based immunotherapy against fibrogenic progenitor-restricted antigens, leading to the regression of fibrosis in concert with liver and lung regeneration.


Asunto(s)
Matriz Extracelular , Hígado , Matriz Extracelular/patología , Fibroblastos/patología , Fibrosis , Humanos , Hígado/patología , Cirrosis Hepática/patología , Vacunación
19.
Front Immunol ; 13: 898827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248829

RESUMEN

Hematopoiesis, a process that results in the differentiation of all blood lineages, is essential throughout life. The production of 1x1012 blood cells per day, including 200x109 erythrocytes, is highly dependent on nutrient consumption. Notably though, the relative requirements for micronutrients during the perinatal period, a critical developmental window for immune cell and erythrocyte differentiation, have not been extensively studied. More specifically, the impact of the vitamin C/ascorbate micronutrient on perinatal as compared to adult hematopoiesis has been difficult to assess in animal models. Even though humans cannot synthesize ascorbate, due to a pseudogenization of the L-gulono-γ-lactone oxidase (GULO) gene, its generation from glucose is an ancestral mammalian trait. Taking advantage of a Gulo-/- mouse model, we show that ascorbic acid deficiency profoundly impacts perinatal hematopoiesis, resulting in a hypocellular bone marrow (BM) with a significant reduction in hematopoietic stem cells, multipotent progenitors, and hematopoietic progenitors. Furthermore, myeloid progenitors exhibited differential sensitivity to vitamin C levels; common myeloid progenitors and megakaryocyte-erythrocyte progenitors were markedly reduced in Gulo-/- pups following vitamin C depletion in the dams, whereas granulocyte-myeloid progenitors were spared, and their frequency was even augmented. Notably, hematopoietic cell subsets were rescued by vitamin C repletion. Consistent with these data, peripheral myeloid cells were maintained in ascorbate-deficient Gulo-/- pups while other lineage-committed hematopoietic cells were decreased. A reduction in B cell numbers was associated with a significantly reduced humoral immune response in ascorbate-depleted Gulo-/- pups but not adult mice. Erythropoiesis was particularly sensitive to vitamin C deprivation during both the perinatal and adult periods, with ascorbate-deficient Gulo-/- pups as well as adult mice exhibiting compensatory splenic differentiation. Furthermore, in the pathological context of hemolytic anemia, vitamin C-deficient adult Gulo-/- mice were not able to sufficiently increase their erythropoietic activity, resulting in a sustained anemia. Thus, vitamin C plays a pivotal role in the maintenance and differentiation of hematopoietic progenitors during the neonatal period and is required throughout life to sustain erythroid differentiation under stress conditions.


Asunto(s)
Deficiencia de Ácido Ascórbico , Mustelidae , Escorbuto , Animales , Ácido Ascórbico/farmacología , Deficiencia de Ácido Ascórbico/genética , Eritropoyesis , Femenino , Glucosa , Humanos , L-Gulonolactona Oxidasa/genética , Ratones , Embarazo , Vitaminas
20.
Redox Biol ; 56: 102431, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35988446

RESUMEN

YAP1 and TAZ are transcriptional co-activator proteins that play fundamental roles in many biological processes, from cell proliferation and cell lineage fate determination to tumorigenesis. We previously demonstrated that Limb Expression 1 (LIX1) regulates YAP1 and TAZ activity and controls digestive mesenchymal progenitor proliferation. However, LIX1 mode of action remains elusive. Here, we found that endogenous LIX1 is localized in mitochondria and is anchored to the outer mitochondrial membrane through S-palmitoylation of cysteine 84, a residue conserved in all LIX1 orthologs. LIX1 downregulation altered the mitochondrial ultrastructure, resulting in a significantly decreased respiration and attenuated production of mitochondrial reactive oxygen species (mtROS). Mechanistically, LIX1 knock-down impaired the stability of the mitochondrial proteins PHB2 and OPA1 that are found in complexes with mitochondrial-specific phospholipids and are required for cristae organization. Supplementation with unsaturated fatty acids counteracted the effects of LIX1 knock-down on mitochondrial morphology and ultrastructure and restored YAP1/TAZ signaling. Collectively, our data demonstrate that LIX1 is a key regulator of cristae organization, modulating mtROS level and subsequently regulating the signaling cascades that control fate commitment of digestive mesenchyme-derived cells.


Asunto(s)
Cisteína , Mitocondrias , Cisteína/metabolismo , Mesodermo/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...