Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
medRxiv ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37745479

RESUMEN

Background: Anesthetic agents including ketamine and nitrous oxide have shown antidepressant properties when appropriately dosed. Our recent open-label trial of propofol, an intravenous anesthetic known to elicit transient positive mood effects, suggested that it may also produce robust and durable antidepressant effects when administered at a high dose that elicits an electroencephalographic (EEG) burst-suppression state. Here we report findings from a randomized controlled trial ( NCT03684447 ) that compared two doses of propofol. We hypothesized greater improvement with a high dose that evoked burst suppression versus a low dose that did not. Methods: Participants with moderate-to-severe, treatment-resistant depression were randomized to a series of 6 treatments at low versus high dose (n=12 per group). Propofol infusions were guided by real-time processed frontal EEG to achieve predetermined pharmacodynamic criteria. The primary and secondary depression outcome measures were the 24-item Hamilton Depression Rating Scale (HDRS-24) and the Patient Health Questionnaire (PHQ-9), respectively. Secondary scales measured suicidal ideation, anxiety, functional impairment, and quality of life. Results: Treatments were well tolerated and blinding procedures were effective. The mean [95%-CI] change in HDRS-24 score was -5.3 [-10.3, -0.2] for the low-dose group and -9.3 [-12.9, -5.6] for the high-dose group (17% versus 33% reduction). The between-group effect size (standardized mean difference) was -0.56 [-1.39, 0.28]. The group difference was not statistically significant (p=0.24, linear model). The mean change in PHQ-9 score was -2.0 [-3.9, -0.1] for the low dose and -4.8 [-7.7, -2.0] for the high dose. The between-group effect size was -0.73 [-1.59, 0.14] (p=0.09). Secondary outcomes favored the high dose (effect sizes magnitudes 0.1 - 0.9) but did not generally reach statistical significance (p>0.05). Conclusions: The medium-sized effects observed between doses in this small, controlled, clinical trial suggest that propofol may have dose-dependent antidepressant effects. The findings also provide guidance for subsequent trials. A larger sample size and additional treatments in series are likely to enhance the ability to detect dose-dependent effects. Future work is warranted to investigate potential antidepressant mechanisms and dose optimization.

2.
Anesthesiology ; 139(4): 476-491, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37351557

RESUMEN

BACKGROUND: Chronic postsurgical pain is a poorly recognized outcome of surgery where patients experience pain long after healing from the surgical insult. Descending control of nociception, a phenomenon whereby application of a strong nociceptive stimulus to one part of the body of animals inhibits pain in remote body regions, offers one strategy to identify a propensity to develop chronic postsurgical pain-like behavior. Here, consomic rat panel was used to test the hypothesis that pain persistence is mechanistically linked to ineffective descending control of nociception. METHODS: Male and female Brown Norway, Dahl S, and eight consomic strains (SS-xBN) were used to determine the presence of chronic postsurgical pain-like behaviors by using paw-withdrawal threshold evaluation (von Frey method) in the area adjacent to a hind paw plantar incision. Descending control of nociception was assessed by measuring hind paw-withdrawal thresholds (Randall-Selitto method) after capsaicin (125 µg) injection into a forepaw. Consomic rats were developed by introgressing individual Brown Norway chromosomes on the Dahl S rat genetic background, as Dahl S rats lack preoperative descending control of nociception. RESULTS: Substitution of several chromosomes from the "pain-resistant" Brown Norway to the "pain-prone" Dahl S/Medical College of Wisconsin reduced mechanical nociceptive sensitivity and increased endogenous pain modulation capacity by differing degrees. Statistical modeling of these data revealed that descending control of nociception is a poor general predictor of the propensity to develop chronic postsurgical pain-like behavior (poor fit for model 1). However, a significant strain-by-descending control of nociception interaction was revealed (model 3, -2*log likelihood; 550.668, -2ll change; 18.093, P = 0.034) with SS-13BN and SS-15BN strains showing a negative descending control of nociception relationship with chronic postsurgical pain-like behavior. CONCLUSIONS: Descending control of nociception poorly predicted which rat strains developed chronic postsurgical pain-like behavior despite controlling for genetic, environmental, and sex differences. Two consomic strains that mimic clinical chronic postsurgical pain criteria and display a strong negative correlation with descending control of nociception were identified, offering novel candidates for future experiments exploring mechanisms that lead to chronic postsurgical pain.


Asunto(s)
Cromosomas , Nocicepción , Ratas , Animales , Femenino , Masculino , Ratas Endogámicas BN , Ratas Endogámicas Dahl , Dolor Postoperatorio/genética
3.
J Clin Invest ; 133(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36856117

RESUMEN

Only three classes of pain medications have made it into clinical use in the past 60 years despite intensive efforts and the need for nonaddictive pain treatments. One reason for the failure involves the use of animal models that lack mechanistic similarity to human pain conditions, with endpoint measurements that may not reflect the human pain experience. In this issue of the JCI, Ding, Fischer, and co-authors developed the foramen lacerum impingement of trigeminal nerve root (FLIT) model of human trigeminal neuralgia that has improved face, construct, and predictive validities over those of current models. They used the FLIT model to investigate the role that abnormal, hypersynchronous cortical activity contributed to a neuropathic pain state. Unrestrained, synchronous glutamatergic activity in the primary somatosensory cortex upper lip and jaw (S1ULp-S1J) region of the somatosensory cortex drove pain phenotypes. The model establishes a powerful tool to continue investigating the interaction between the peripheral and central nervous systems that leads to chronic pain.


Asunto(s)
Dolor Crónico , Neuralgia , Animales , Humanos , Dolor Crónico/terapia , Sistema Nervioso Central , Neuralgia/terapia , Modelos Animales , Manejo del Dolor
4.
Sci Rep ; 12(1): 19348, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369350

RESUMEN

Animal models are essential for studying the pathophysiology of chronic pain disorders and as screening tools for new therapies. However, most models available do not reproduce key characteristics of clinical persistent pain. This has limited their ability to accurately predict which new medicines will be clinically effective. Here, we characterize the Dahl salt-sensitive (SS) rat strain as the first rodent model of inherited widespread hyperalgesia. We show that this strain exhibits physiological phenotypes known to contribute to chronic pain, such as neuroinflammation, defective endogenous pain modulation, dysfunctional hypothalamic-pituitary-adrenal axis, increased oxidative stress and immune cell activation. When compared with Sprague Dawley and Brown Norway rats, SS rats have lower nociceptive thresholds due to increased inflammatory mediator concentrations, lower corticosterone levels, and high oxidative stress. Treatment with dexamethasone, the reactive oxygen species scavenger tempol, or the glial inhibitor minocycline attenuated the pain sensitivity in SS rats without affecting the other strains while indomethacin and gabapentin provided less robust pain relief. Moreover, SS rats presented impaired diffuse noxious inhibitory controls and an exacerbated response to the proalgesic mediator PGE2, features of generalized pain conditions. These data establish this strain as a novel model of spontaneous, widespread hyperalgesia that can be used to identify biomarkers for chronic pain diagnosis and treatment.


Asunto(s)
Dolor Crónico , Hipertensión , Ratas , Animales , Ratas Endogámicas Dahl , Hiperalgesia , Roedores , Sistema Hipotálamo-Hipofisario , Ratas Sprague-Dawley , Sistema Hipófiso-Suprarrenal , Ratas Endogámicas BN
5.
Life Sci ; 286: 120023, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34626607

RESUMEN

AIMS: Temporomandibular disorders are a cluster of orofacial conditions that are characterized by pain in the temporomandibular joint (TMJ) and surrounding muscles/tissues. Animal models of painful temporomandibular dysfunction (TMD) are valuable tools to investigate the mechanisms responsible for symptomatic temporomandibular joint and associated structures disorders. We tested the hypothesis that a predisposing and a precipitating factor are required to produce painful TMD in rats, using the ratgnawmeter, a device that determines temporomandibular pain based on the time taken for the rat to chew through two obstacles. MATERIALS AND METHODS: Increased time in the ratgnawmeter correlated with nociceptive behaviors produced by TMJ injection of formalin (2.5%), confirming chewing time as an index of painful TMD. Rats exposed only to predisposing factors, carrageenan-induced TMJ inflammation or sustained inhibition of the catechol-O-methyltransferase (COMT) enzyme by OR-486, showed no changes in chewing time. However, when combined with a precipitating event, i.e., exaggerated mouth opening produced by daily 1-h jaw extension for 7 consecutive days, robust function impairment was produced. KEY FINDINGS: These results validate the ratgnawmeter as an efficient method to evaluate functional TMD pain by evaluating chewing time, and this protocol as a model with face and construct validities to investigate symptomatic TMD mechanisms. SIGNIFICANCE: This study suggests that a predisposition factor must be present in order for an insult to the temporomandibular system to produce painful dysfunction. The need for a combined contribution of these factors might explain why not all patients experiencing traumatic events, such as exaggerated mouth opening, develop TMDs.


Asunto(s)
Cara/patología , Trastornos de la Articulación Temporomandibular/fisiopatología , Animales , Conducta Animal , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Dolor Facial/etiología , Masculino , Masticación/fisiología , Ratas , Ratas Sprague-Dawley , Trastornos de la Articulación Temporomandibular/complicaciones
6.
Neuroscience ; 463: 159-173, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33826955

RESUMEN

Dopamine neurons in the periaqueductal gray (PAG)/dorsal raphe are key modulators of antinociception with known supraspinal targets. However, no study has directly tested whether these neurons contribute to descending pain inhibition. We hypothesized that PAG dopamine neurons contribute to the analgesic effect of D-amphetamine via a mechanism that involves descending modulation via the rostral ventral medulla (RVM). Male C57BL/6 mice showed increased c-FOS expression in PAG dopamine neurons and a significant increase in paw withdrawal latency to thermal stimulation after receiving a systemic injection of D-amphetamine. Targeted microinfusion of D-amphetamine, L-DOPA, or the selective D2 agonist quinpirole into the PAG produced analgesia, while a D1 agonist, chloro APB, had no effect. In addition, inhibition of D2 receptors in the PAG by eticlopride prevented the systemic D-amphetamine analgesic effect. D-amphetamine and PAG D2 receptor-mediated analgesia were inhibited by intra-RVM injection of lidocaine or the GABAA receptor agonist muscimol, indicating a PAG-RVM signaling pathway in this model of analgesia. Finally, both systemic D-amphetamine and local PAG microinjection of quinpirole, inhibited inflammatory hyperalgesia induced by carrageenan. This hyperalgesia was transiently restored by intra-PAG injection of eticlopride, as well as RVM microinjection of muscimol. We conclude that D-amphetamine analgesia is partially mediated by descending inhibition and that D2 receptors in the PAG are responsible for this effect via modulating neurons that project to the RVM. These results further our understanding of the antinociceptive effects of dopamine and elucidate a mechanism by which clinically available dopamine modulators produce analgesia.


Asunto(s)
Hiperalgesia , Sustancia Gris Periacueductal , Animales , Núcleo Dorsal del Rafe , Hiperalgesia/tratamiento farmacológico , Masculino , Bulbo Raquídeo , Ratones , Ratones Endogámicos C57BL , Dimensión del Dolor
7.
Anesth Analg ; 132(4): e50-e55, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33560660

RESUMEN

Many general anesthetics potentiate gamma-aminobutyric acid (GABA) A receptors but their neuroanatomic sites of action are less clear. GABAergic neurons in the rostromedial tegmental nucleus (RMTg) send inhibitory projections to multiple arousal-promoting nuclei, but the role of these neurons in modulating consciousness is unknown. In this study, designer receptors exclusively activated by designer drugs (DREADDs) were targeted to RMTg GABAergic neurons of Vgat-ires-Cre mice. DREADDs expression was found in the RMTg and other brainstem regions. Activation of these neurons decreased movement and exploratory behavior, impaired motor coordination, induced electroencephalogram (EEG) oscillations resembling nonrapid eye movement (NREM) sleep without loss of righting and reduced the dose requirement for sevoflurane-induced unconsciousness. These results suggest that GABAergic neurons in the RMTg and other brainstem regions promote sedation and facilitate sevoflurane-induced unconsciousness.


Asunto(s)
Anestésicos por Inhalación/farmacología , Conducta Animal/efectos de los fármacos , Tronco Encefálico/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Sevoflurano/farmacología , Sueño/efectos de los fármacos , Animales , Tronco Encefálico/metabolismo , Ondas Encefálicas/efectos de los fármacos , Conducta Exploratoria/efectos de los fármacos , Femenino , Neuronas GABAérgicas/metabolismo , Masculino , Ratones Transgénicos , Actividad Motora/efectos de los fármacos
8.
Pain ; 160(11): 2524-2534, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31246732

RESUMEN

A recently defined structure, the rostromedial tegmental nucleus (RMTg; aka tail of the ventral tegmental area [VTA]), has been proposed as an inhibitory control center for dopaminergic activity of the VTA. This region is composed of GABAergic cells that send afferent projections to the ventral midbrain and synapse onto dopaminergic cells in the VTA and substantia nigra. These cells exhibit µ-opioid receptor immunoreactivity, and in vivo, ex vivo, and optogenetic/electrophysiological approaches demonstrate that morphine excites dopamine neurons by targeting receptors on GABAergic neurons localized in the RMTg. This suggests that the RMTg may be a key modulator of opioid effects and a major brake regulating VTA dopamine systems. However, no study has directly manipulated RMTg GABAergic neurons in vivo and assessed the effect on nociception or opioid analgesia. In this study, multiplexing of GABAergic neurons in the RMTg was achieved using stimulatory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) and inhibitory kappa-opioid receptor DREADDs (KORD). Our data show that locally infused RMTg morphine or selective RMTg GABAergic neuron inhibition produces 87% of the maximal antinociceptive effect of systemic morphine, and RMTg GABAergic neurons modulate dopamine release in the nucleus accumbens. In addition, chemoactivation of VTA dopamine neurons significantly reduced pain behaviors both in resting and facilitated pain states and reduced by 75% the dose of systemic morphine required to produce maximal antinociception. These results provide compelling evidence that RMTg GABAergic neurons are involved in processing of nociceptive information and are important mediators of opioid analgesia.


Asunto(s)
Analgésicos Opioides/farmacología , Vías Nerviosas/efectos de los fármacos , Tegmento Mesencefálico/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Ratones Transgénicos , Morfina/farmacología , Núcleo Accumbens/efectos de los fármacos , Receptores Opioides/efectos de los fármacos , Tegmento Mesencefálico/citología , Ácido gamma-Aminobutírico/farmacología
9.
eNeuro ; 6(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31058210

RESUMEN

The periaqueductal gray (PAG) is a significant modulator of both analgesic and fear behaviors in both humans and rodents, but the underlying circuitry responsible for these two phenotypes is incompletely understood. Importantly, it is not known if there is a way to produce analgesia without anxiety by targeting the PAG, as modulation of glutamate or GABA neurons in this area initiates both antinociceptive and anxiogenic behavior. While dopamine (DA) neurons in the ventrolateral PAG (vlPAG)/dorsal raphe display a supraspinal antinociceptive effect, their influence on anxiety and fear are unknown. Using DAT-cre and Vglut2-cre male mice, we introduced designer receptors exclusively activated by designer drugs (DREADD) to DA and glutamate neurons within the vlPAG using viral-mediated delivery and found that levels of analgesia were significant and quantitatively similar when DA and glutamate neurons were selectively stimulated. Activation of glutamatergic neurons, however, reliably produced higher indices of anxiety, with increased freezing time and more time spent in the safety of a dark enclosure. In contrast, animals in which PAG/dorsal raphe DA neurons were stimulated failed to show fear behaviors. DA-mediated antinociception was inhibitable by haloperidol and was sufficient to prevent persistent inflammatory pain induced by carrageenan. In summary, only activation of DA neurons in the PAG/dorsal raphe produced profound analgesia without signs of anxiety, indicating that PAG/dorsal raphe DA neurons are an important target involved in analgesia that may lead to new treatments for pain.


Asunto(s)
Ansiedad/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ácido Glutámico/metabolismo , Dolor/metabolismo , Sustancia Gris Periacueductal/metabolismo , Analgesia/métodos , Animales , Núcleo Dorsal del Rafe/metabolismo , Miedo/fisiología , Masculino , Ratones Transgénicos
10.
Neurobiol Dis ; 110: 47-58, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29141182

RESUMEN

Sudden unexpected death in epilepsy (SUDEP) is a devastating epilepsy complication. Seizure-induced respiratory arrest (S-IRA) occurs in many witnessed SUDEP patients and animal models as an initiating event leading to death. Thus, understanding the mechanisms underlying S-IRA will advance the development of preventive strategies against SUDEP. Serotonin (5-HT) is an important modulator for many vital functions, including respiration and arousal, and a deficiency of 5-HT signaling is strongly implicated in S-IRA in animal models, including the DBA/1 mouse. However, the brain structures that contribute to S-IRA remain elusive. We hypothesized that the dorsal raphe (DR), which sends 5-HT projections to the forebrain, is implicated in S-IRA. The present study used optogenetics in the DBA/1 mouse model of SUDEP to selectively activate 5-HT neurons in the DR. Photostimulation of DR 5-HT neurons significantly and reversibly reduced the incidence of S-IRA evoked by acoustic stimulation. Activation of 5-HT neurons in the DR suppressed tonic seizures in most DBA/1 mice without altering the seizure latency and duration of wild running and clonic seizures evoked by acoustic stimulation. This suppressant effect of photostimulation on S-IRA is independent of seizure models, as optogenetic stimulation of DR also reduced S-IRA induced by pentylenetetrazole, a proconvulsant widely used to model human generalized seizures. The S-IRA-suppressing effect of photostimulation was increased by 5-hydroxytryptophan, a chemical precursor for 5-HT synthesis, and was reversed by ondansetron, a specific 5-HT3 receptor antagonist, indicating that reduction of S-IRA by photostimulation of the DR is specifically mediated by enhanced 5-HT neurotransmission. Our findings suggest that deficits in 5-HT neurotransmission in the DR are implicated in S-IRA in DBA/1 mice, and that targeted intervention in the DR is potentially useful for prevention of SUDEP.


Asunto(s)
Muerte Súbita/etiología , Núcleo Dorsal del Rafe/metabolismo , Estimulación Luminosa , Insuficiencia Respiratoria/etiología , Convulsiones/complicaciones , Neuronas Serotoninérgicas/metabolismo , Animales , Modelos Animales de Enfermedad , Núcleo Dorsal del Rafe/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Optogenética , Estimulación Luminosa/métodos , Insuficiencia Respiratoria/fisiopatología , Convulsiones/fisiopatología , Neuronas Serotoninérgicas/patología , Serotonina/metabolismo
11.
Front Neural Circuits ; 11: 36, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28725184

RESUMEN

Although general anesthetics are routinely administered to surgical patients to induce loss of consciousness, the mechanisms underlying anesthetic-induced unconsciousness are not fully understood. In rats, we characterized changes in the extradural EEG and intracranial local field potentials (LFPs) within the prefrontal cortex (PFC), parietal cortex (PC), and central thalamus (CT) in response to progressively higher doses of the inhaled anesthetic sevoflurane. During induction with a low dose of sevoflurane, beta/low gamma (12-40 Hz) power increased in the frontal EEG and PFC, PC and CT LFPs, and PFC-CT and PFC-PFC LFP beta/low gamma coherence increased. Loss of movement (LOM) coincided with an abrupt decrease in beta/low gamma PFC-CT LFP coherence. Following LOM, cortically coherent slow-delta (0.1-4 Hz) oscillations were observed in the frontal EEG and PFC, PC and CT LFPs. At higher doses of sevoflurane sufficient to induce loss of the righting reflex, coherent slow-delta oscillations were dominant in the frontal EEG and PFC, PC and CT LFPs. Dynamics similar to those observed during induction were observed as animals emerged from sevoflurane anesthesia. We conclude that the rat is a useful animal model for sevoflurane-induced EEG oscillations in humans, and that coherent slow-delta oscillations are a correlate of sevoflurane-induced behavioral arrest and loss of righting in rats.


Asunto(s)
Anestésicos por Inhalación/farmacología , Ritmo Delta/efectos de los fármacos , Éteres Metílicos/farmacología , Lóbulo Parietal/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Tálamo/efectos de los fármacos , Animales , Ritmo beta/efectos de los fármacos , Sincronización Cortical/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Electrodos Implantados , Ritmo Gamma/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Ratas Sprague-Dawley , Reflejo de Enderezamiento/efectos de los fármacos , Reflejo de Enderezamiento/fisiología , Sevoflurano , Tálamo/fisiología
12.
Proc Natl Acad Sci U S A ; 113(45): 12826-12831, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791160

RESUMEN

Dopamine (DA) promotes wakefulness, and DA transporter inhibitors such as dextroamphetamine and methylphenidate are effective for increasing arousal and inducing reanimation, or active emergence from general anesthesia. DA neurons in the ventral tegmental area (VTA) are involved in reward processing, motivation, emotion, reinforcement, and cognition, but their role in regulating wakefulness is less clear. The current study was performed to test the hypothesis that selective optogenetic activation of VTA DA neurons is sufficient to induce arousal from an unconscious, anesthetized state. Floxed-inverse (FLEX)-Channelrhodopsin2 (ChR2) expression was targeted to VTA DA neurons in DA transporter (DAT)-cre mice (ChR2+ group; n = 6). Optical VTA stimulation in ChR2+ mice during continuous, steady-state general anesthesia (CSSGA) with isoflurane produced behavioral and EEG evidence of arousal and restored the righting reflex in 6/6 mice. Pretreatment with the D1 receptor antagonist SCH-23390 before optical VTA stimulation inhibited the arousal responses and restoration of righting in 6/6 ChR2+ mice. In control DAT-cre mice, the VTA was targeted with a viral vector lacking the ChR2 gene (ChR2- group; n = 5). VTA optical stimulation in ChR2- mice did not restore righting or produce EEG changes during isoflurane CSSGA in 5/5 mice. These results provide compelling evidence that selective stimulation of VTA DA neurons is sufficient to induce the transition from an anesthetized, unconscious state to an awake state, suggesting critical involvement in behavioral arousal.

13.
Anesth Analg ; 123(5): 1210-1219, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26991753

RESUMEN

BACKGROUND: Although emergence from general anesthesia is clinically treated as a passive process driven by the pharmacokinetics of drug clearance, agents that hasten recovery from general anesthesia may be useful for treating delayed emergence, emergence delirium, and postoperative cognitive dysfunction. Activation of central monoaminergic neurotransmission with methylphenidate has been shown to induce reanimation (active emergence) from general anesthesia. Cholinergic neurons in the brainstem and basal forebrain are also known to promote arousal. The objective of this study was to test the hypothesis that physostigmine, a centrally acting cholinesterase inhibitor, induces reanimation from isoflurane anesthesia in adult rats. METHODS: The dose-dependent effects of physostigmine on time to emergence from a standardized isoflurane general anesthetic were tested. It was then determined whether physostigmine restores righting during continuous isoflurane anesthesia. In a separate group of rats with implanted extradural electrodes, physostigmine was administered during continuous inhalation of 1.0% isoflurane, and the electroencephalogram changes were recorded. Finally, 2.0% isoflurane was used to induce burst suppression, and the effects of physostigmine and methylphenidate on burst suppression probability (BSP) were tested. RESULTS: Physostigmine delayed time to emergence from isoflurane anesthesia at doses ≥0.2 mg/kg (n = 9). During continuous isoflurane anesthesia (0.9% ± 0.1%), physostigmine did not restore righting (n = 9). Blocking the peripheral side effects of physostigmine with the coadministration of glycopyrrolate (a muscarinic antagonist that does not cross the blood-brain barrier) produced similar results (n = 9 each). However, during inhalation of 1.0% isoflurane, physostigmine shifted peak electroencephalogram power from δ (<4 Hz) to θ (4-8 Hz) in 6 of 6 rats. During continuous 2.0% isoflurane anesthesia, physostigmine induced large, statistically significant decreases in BSP in 6 of 6 rats, whereas methylphenidate did not. CONCLUSIONS: Unlike methylphenidate, physostigmine does not accelerate time to emergence from isoflurane anesthesia and does not restore righting during continuous isoflurane anesthesia. However, physostigmine consistently decreases BSP during deep isoflurane anesthesia, whereas methylphenidate does not. These findings suggest that activation of cholinergic neurotransmission during isoflurane anesthesia produces arousal states that are distinct from those induced by monoaminergic activation.


Asunto(s)
Anestesia General/métodos , Nivel de Alerta/efectos de los fármacos , Isoflurano/administración & dosificación , Metilfenidato/administración & dosificación , Fisostigmina/administración & dosificación , Anestésicos por Inhalación/administración & dosificación , Animales , Nivel de Alerta/fisiología , Inhibidores de la Colinesterasa/administración & dosificación , Relación Dosis-Respuesta a Droga , Electroencefalografía/efectos de los fármacos , Electroencefalografía/métodos , Infusiones Intravenosas , Masculino , Ratas , Ratas Sprague-Dawley
14.
Behav Brain Res ; 306: 20-5, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26971629

RESUMEN

Clinically, emergence from general anesthesia is viewed as a passive process where anesthetics are discontinued at the end of surgery and anesthesiologists wait for the drugs to wear off. The mechanisms involved in emergence are not well understood and there are currently no drugs that can actively reverse the state of general anesthesia. An emerging hypothesis states that brain regions that control arousal become active during emergence and are a key part of the return to wakefulness. In this study, we tested the hypothesis that electrical activation of the glutamatergic parabrachial nucleus (PBN) in the brainstem is sufficient to induce reanimation (active emergence) during continuous isoflurane general anesthesia. Using c-Fos immunohistochemistry as a marker of neural activity, we first show a selective increase in active neurons in the PBN during passive emergence from isoflurane anesthesia. We then electrically stimulated the PBN to assess whether it is sufficient to induce reanimation from isoflurane general anesthesia. Stimulation induced behavioral arousal and restoration of the righting reflex during continuous isoflurane general anesthesia. In contrast, stimulation of the nearby central inferior colliculus (CIC) did not restore the righting reflex. Spectral analysis of the electroencephalogram (EEG) revealed that stimulation produced a significant decrease in EEG delta power during PBN stimulation. The results are consistent with the hypothesis that the PBN provides critical arousal input during emergence from isoflurane anesthesia.


Asunto(s)
Anestésicos por Inhalación/farmacología , Ondas Encefálicas/efectos de los fármacos , Estimulación Eléctrica/métodos , Isoflurano/farmacología , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/fisiología , Animales , Ondas Encefálicas/fisiología , Recuento de Células , Electroencefalografía , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Probabilidad , Proteínas Proto-Oncogénicas c-fos/metabolismo
15.
PLoS One ; 10(7): e0131914, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26148114

RESUMEN

Methylphenidate induces reanimation (active emergence) from general anesthesia in rodents, and recent evidence suggests that dopaminergic neurotransmission is important in producing this effect. Dextroamphetamine causes the direct release of dopamine and norepinephrine, whereas atomoxetine is a selective reuptake inhibitor for norepinephrine. Like methylphenidate, both drugs are prescribed to treat Attention Deficit Hyperactivity Disorder. In this study, we tested the efficacy of dextroamphetamine and atomoxetine for inducing reanimation from general anesthesia in rats. Emergence from general anesthesia was defined by return of righting. During continuous sevoflurane anesthesia, dextroamphetamine dose-dependently induced behavioral arousal and restored righting, but atomoxetine did not (n = 6 each). When the D1 dopamine receptor antagonist SCH-23390 was administered prior to dextroamphetamine under the same conditions, righting was not restored (n = 6). After a single dose of propofol (8 mg/kg i.v.), the mean emergence times for rats that received normal saline (vehicle) and dextroamphetamine (1 mg/kg i.v.) were 641 sec and 404 sec, respectively (n = 8 each). The difference was statistically significant. Although atomoxetine reduced mean emergence time to 566 sec (n = 8), this decrease was not statistically significant. Spectral analysis of electroencephalogram recordings revealed that dextroamphetamine and atomoxetine both induced a shift in peak power from δ (0.1-4 Hz) to θ (4-8 Hz) during continuous sevoflurane general anesthesia, which was not observed when animals were pre-treated with SCH-23390. In summary, dextroamphetamine induces reanimation from general anesthesia in rodents, but atomoxetine does not induce an arousal response under the same experimental conditions. This supports the hypothesis that dopaminergic stimulation during general anesthesia produces a robust behavioral arousal response. In contrast, selective noradrenergic stimulation causes significant neurophysiological changes, but does not promote behavioral arousal during general anesthesia. We hypothesize that dextroamphetamine is more likely than atomoxetine to be clinically useful for restoring consciousness in anesthetized patients, mainly due to its stimulation of dopaminergic neurotransmission.


Asunto(s)
Clorhidrato de Atomoxetina/farmacología , Estado de Conciencia/efectos de los fármacos , Dextroanfetamina/farmacología , Dopamina/metabolismo , Norepinefrina/metabolismo , Anestesia General/métodos , Animales , Nivel de Alerta/efectos de los fármacos , Benzazepinas/farmacología , Electroencefalografía/efectos de los fármacos , Masculino , Éteres Metílicos/farmacología , Metilfenidato/farmacología , Propofol/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Sevoflurano
16.
Anesthesiology ; 121(2): 311-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24398816

RESUMEN

BACKGROUND: Methylphenidate or a D1 dopamine receptor agonist induces reanimation (active emergence) from general anesthesia. The authors tested whether electrical stimulation of dopaminergic nuclei also induces reanimation from general anesthesia. METHODS: In adult rats, a bipolar insulated stainless steel electrode was placed in the ventral tegmental area (VTA, n = 5) or substantia nigra (n = 5). After a minimum 7-day recovery period, the isoflurane dose sufficient to maintain loss of righting was established. Electrical stimulation was initiated and increased in intensity every 3 min to a maximum of 120 µA. If stimulation restored the righting reflex, an additional experiment was performed at least 3 days later during continuous propofol anesthesia. Histological analysis was conducted to identify the location of the electrode tip. In separate experiments, stimulation was performed in the prone position during general anesthesia with isoflurane or propofol, and the electroencephalogram was recorded. RESULTS: To maintain loss of righting, the dose of isoflurane was 0.9% ± 0.1 vol%, and the target plasma dose of propofol was 4.4 ± 1.1 µg/ml (mean ± SD). In all rats with VTA electrodes, electrical stimulation induced a graded arousal response including righting that increased with current intensity. VTA stimulation induced a shift in electroencephalogram peak power from δ (<4 Hz) to θ (4-8 Hz). In all rats with substantia nigra electrodes, stimulation did not elicit an arousal response or significant electroencephalogram changes. CONCLUSIONS: Electrical stimulation of the VTA, but not the substantia nigra, induces reanimation during general anesthesia with isoflurane or propofol. These results are consistent with the hypothesis that dopamine release by VTA neurons, but not substantia nigra neurons, induces reanimation from general anesthesia.


Asunto(s)
Periodo de Recuperación de la Anestesia , Anestesia General , Área Tegmental Ventral/fisiología , Anestesia Intravenosa , Anestésicos Intravenosos/farmacología , Animales , Nivel de Alerta/efectos de los fármacos , Dopamina/fisiología , Estimulación Eléctrica , Electrodos Implantados , Electroencefalografía/efectos de los fármacos , Masculino , Propofol/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Dopaminérgicos/efectos de los fármacos , Receptores Dopaminérgicos/fisiología , Reflejo/efectos de los fármacos , Sustancia Negra/efectos de los fármacos , Sustancia Negra/fisiología , Área Tegmental Ventral/efectos de los fármacos
17.
Anesthesiology ; 118(1): 30-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23221866

RESUMEN

BACKGROUND: A recent study showed that methylphenidate induces emergence from isoflurane anesthesia. Methylphenidate inhibits dopamine and norepinephrine reuptake transporters. The objective of this study was to test the hypothesis that selective dopamine receptor activation induces emergence from isoflurane anesthesia. METHODS: In adult rats, we tested the effects of chloro-APB (D1 agonist) and quinpirole (D2 agonist) on time to emergence from isoflurane general anesthesia. We then performed a dose-response study to test for chloro-APB-induced restoration of righting during continuous isoflurane anesthesia. SCH-23390 (D1 antagonist) was used to confirm that the effects induced by chloro-APB are specifically mediated by D1 receptors. In a separate group of animals, spectral analysis was performed on surface electroencephalogram recordings to assess neurophysiologic changes induced by chloro-APB and quinpirole during isoflurane general anesthesia. RESULTS: Chloro-APB decreased median time to emergence from 330 to 50 s. The median difference in time to emergence between the saline control group (n = 6) and the chloro-APB group (n = 6) was 222 s (95% CI: 77-534 s, Mann-Whitney test). This difference was statistically significant (P = 0.0082). During continuous isoflurane anesthesia, chloro-APB dose-dependently restored righting (n = 6) and decreased electroencephalogram δ power (n = 4). These effects were inhibited by pretreatment with SCH-23390. Quinpirole did not restore righting (n = 6) and had no significant effect on the electroencephalogram (n = 4) during continuous isoflurane anesthesia. CONCLUSIONS: Activation of D1 receptors by chloro-APB decreases time to emergence from isoflurane anesthesia and produces behavioral and neurophysiologic evidence of arousal during continuous isoflurane anesthesia. These findings suggest that selective activation of a D1 receptor-mediated arousal mechanism is sufficient to induce emergence from isoflurane general anesthesia.


Asunto(s)
Anestesia General , Anestésicos por Inhalación/farmacología , Nivel de Alerta/efectos de los fármacos , Agonistas de Dopamina/farmacología , Isoflurano/farmacología , Receptores de Dopamina D1/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Benzazepinas/farmacología , Electroencefalografía/efectos de los fármacos , Masculino , Quinpirol/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D2/efectos de los fármacos
18.
Hypertension ; 55(4): 974-82, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20194304

RESUMEN

MicroRNAs are endogenous repressors of gene expression. We examined microRNAs in the renal medulla of Dahl salt-sensitive rats and consomic SS-13(BN) rats. Salt-induced hypertension and renal injury in Dahl salt-sensitive rats, particularly medullary interstitial fibrosis, have been shown previously to be substantially attenuated in SS-13(BN) rats. Of 377 microRNAs examined, 5 were found to be differentially expressed between Dahl salt-sensitive rats and consomic SS-13(BN) rats receiving a high-salt diet. Real-time PCR analysis demonstrated that high-salt diets induced substantial upregulation of miR-29b in the renal medulla of SS-13(BN) rats but not in SS rats. miR-29b was predicted to regulate 20 collagen genes, matrix metalloproteinase 2 (Mmp2), integrin beta1 (Itgb1), and other genes related to the extracellular matrix. Expression of 9 collagen genes and Mmp2 was upregulated by a high-salt diet in the renal medulla of SS rats, but not in SS-13(BN) rats, an expression pattern opposite to miR-29b. Knockdown of miR-29b in the kidneys of SS-13(BN) rats resulted in upregulation of several collagen genes. miR-29b reduced expression levels of several collagen genes and Itgb1 in cultured rat renal medullary epithelial cells. Moreover, miR-29b suppressed the activity of luciferase when the reporter gene was linked to a 3'-untranslated segment of collagen genes Col1a1, Col3a1, Col4a1, Col5a1, Col5a2, Col5a3, Col7a1, Col8a1, Mmp2, or Itgb1 but not Col12a1. The result demonstrated broad effects of miR-29b on a large number of collagens and genes related to the extracellular matrix and suggested involvement of miR-29b in the protection from renal medullary injury in SS-13(BN) rats.


Asunto(s)
Colágeno/genética , Médula Renal/fisiología , MicroARNs/genética , Análisis de Varianza , Animales , Presión Sanguínea/genética , Western Blotting , Colágeno/metabolismo , Perfilación de la Expresión Génica , Integrina beta1/genética , Integrina beta1/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas Dahl , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cloruro de Sodio Dietético/administración & dosificación
19.
Hypertension ; 48(6): 1066-71, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17060509

RESUMEN

NO synthase (NOS) can paradoxically contribute to the production of reactive oxygen species when l-arginine or the cofactor R-tetrahydrobiopterin (BH(4)) becomes limited. The present study examined whether NOS contributes to superoxide production in kidneys of hypertensive Dahl salt-sensitive (SS) rats compared with an inbred consomic control strain (SS-13(BN)) and tested the hypothesis that elevated dihydrobiopterin (BH(2)) levels are importantly involved in this process. This was assessed by determining the effects of l-nitroarginine methyl ester (l-NAME) inhibition of NOS on superoxide production and by comparing tissue concentrations of BH(4) and BH(2). A reverse-phase high-performance liquid chromatography method was applied for direct measurements of BH(4) and BH(2) using (S)-tetrahydrobiopterin as an internal standard. Superoxide concentrations were measured in vivo from medullary microdialysis fluid using dihydroethidine and in vitro using lucigenin. The results indicate the following: (1) that superoxide levels were elevated in the outer medulla of SS rats fed a 4% salt diet and could be inhibited by l-NAME. In contrast, l-NAME resulted in elevated superoxide production in consomic SS-13(BN) rats because of higher NOS activity; (2) SS rats showed a reduced ratio of BH(4)/BH(2) in the outer medulla that was driven by increased concentrations of BH(2); and (3) lower superoxide dismutase and catalase activities contributed to elevated reactive oxygen species in SS samples. Based on the shift of BH(4) to BH(2) and the observation of l-NAME inhibitable superoxide production, we conclude that NOS uncoupling occurs in the renal medulla of hypertensive SS rats fed a high-salt diet.


Asunto(s)
Biopterinas/análogos & derivados , Médula Renal/metabolismo , Riñón/metabolismo , Estrés Oxidativo/fisiología , Superóxidos/metabolismo , Animales , Biopterinas/análisis , Biopterinas/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Hipertensión/fisiopatología , Médula Renal/efectos de los fármacos , Masculino , NG-Nitroarginina Metil Éster/farmacología , Ratas , Ratas Endogámicas Dahl
20.
Hypertension ; 47(4): 692-8, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16505210

RESUMEN

Dahl salt-sensitive (SS) rats exhibit increased renal medullary oxidative stress and blood pressure salt-sensitivity compared with consomic, salt-resistant SS-13BN rats, despite highly similar genetic backgrounds. The present study examined potential sources of renal medullary superoxide in prehypertensive SS rats fed a 0.4% NaCl diet by assessing activity and protein levels of superoxide producing and scavenging enzymes. Superoxide production was nearly doubled in SS rats compared with SS-13BN rats as determined by urinary 8-isoprostane excretion and renal medullary oxy-ethidium microdialysate levels. Medullary superoxide production in tissue homogenates was greater in SS rats, and the NADPH oxidase inhibitor diphenylene iodonium preferentially reduced SS levels to those found in SS-13BN rats. Dinitrophenol, a mitochondrial uncoupler, eliminated the remaining superoxide production in both strains, whereas inhibition of xanthine oxidase, NO synthase, and cycloxygenase had no effect. L-arginine, NO synthase, superoxide dismutase, catalase, and glutathione peroxidase activities between SS and SS-13BN rats did not differ. Chronic blood pressure responses to a 4% NaCl diet were then determined in the presence or absence of the NADPH oxidase inhibitor apocynin (3.5 microg/kg per minute), chronically delivered directly into the renal medulla. Apocynin infusion reduced renal medullary interstitial superoxide from 1059+/-130 to 422+/-80 (oxyethidium fluorescence units) and mean arterial pressure from 175+/-4 to 157+/-6 mm Hg in SS rats, whereas no effects on either were observed in the SS-13(BN). We conclude that excess renal medullary superoxide production in SS rats contributes to salt-induced hypertension, and NADPH oxidase is the major source of the excess superoxide.


Asunto(s)
Hipertensión/etiología , Hipertensión/fisiopatología , Médula Renal/enzimología , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Cloruro de Sodio Dietético , Acetofenonas/farmacología , Animales , Catalasa/metabolismo , Cromosomas de los Mamíferos , Resistencia a Medicamentos/genética , Inhibidores Enzimáticos/farmacología , Glutatión Peroxidasa/metabolismo , Hipertensión/metabolismo , Isoenzimas/metabolismo , Ratas , Ratas Endogámicas BN/genética , Ratas Endogámicas Dahl , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...