Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38649270

RESUMEN

In competitive interactions, humans have to flexibly update their beliefs about another person's intentions in order to adjust their own choice strategy, such as when believing that the other may exploit their cooperativeness. Here we investigate both the neural dynamics and the causal neural substrate of belief updating processes in humans. We used an adapted prisoner's dilemma game in which participants explicitly predicted the coplayer's actions, which allowed us to quantify the prediction error between expected and actual behavior. First, in an EEG experiment, we found a stronger medial frontal negativity (MFN) for negative than positive prediction errors, suggesting that this medial frontal ERP component may encode unexpected defection of the coplayer. The MFN also predicted subsequent belief updating after negative prediction errors. In a second experiment, we used transcranial magnetic stimulation (TMS) to investigate whether the dorsomedial prefrontal cortex (dmPFC) causally implements belief updating after unexpected outcomes. Our results show that dmPFC TMS impaired belief updating and strategic behavioral adjustments after negative prediction errors. Taken together, our findings reveal the time course of the use of prediction errors in social decisions and suggest that the dmPFC plays a crucial role in updating mental representations of others' intentions.


Asunto(s)
Corteza Prefrontal , Interacción Social , Estimulación Magnética Transcraneal , Humanos , Corteza Prefrontal/fisiología , Masculino , Femenino , Adulto Joven , Adulto , Electroencefalografía , Dilema del Prisionero , Cultura , Potenciales Evocados/fisiología
2.
Sci Rep ; 9(1): 6307, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-31004125

RESUMEN

Distinguishing between verbal and visual working memory processes is complicated by the fact that the strategy used is hard to control or even assess. Many stimuli used in working memory tasks can be processed via verbal or visual coding, such as the digits in the digit span backwards task (DSB). The present study used repetitive transcranial magnetic stimulation (rTMS) to examine the use of visual processing strategies in the DSB. A total of 47 German university students took part in the study, 23 spontaneously using a verbal processing strategy and 24 using a visual strategy. After rTMS to the right occipital cortex, visualizers showed a significantly stronger mean performance decrease compared to verbalizers. The results indicate that the visual cortex is more critical for visualizers compared to verbalizers in the DSB task. Furthermore, the favored processing modality seems to be determined by the preference for a cognitive strategy rather than the presentation modality, and people are aware of the applied strategy. These findings provide insight into inter-individual differences in working memory processing and yield important implications for laboratory studies as well as clinical practice: the stimulus does not necessarily determine the processing and the participant can be aware of that.


Asunto(s)
Lateralidad Funcional , Memoria a Corto Plazo , Lóbulo Occipital , Corteza Prefrontal , Estimulación Magnética Transcraneal , Conducta Verbal , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tiempo de Reacción
3.
Brain Stimul ; 5(2): 124-9, 2012 04.
Artículo en Inglés | MEDLINE | ID: mdl-22494831

RESUMEN

Probing brain functions by brain stimulation while simultaneously recording brain activity allows addressing major issues in cognitive neuroscience. We review recent studies where electroencephalography (EEG) has been combined with transcranial magnetic stimulation (TMS) in order to investigate possible neuronal substrates of visual perception and attention. TMS-EEG has been used to study both pre-stimulus brain activity patterns that affect upcoming perception, and also the stimulus-evoked and task-related inter-regional interactions within the extended visual-attentional network from which attention and perception emerge. Local processes in visual areas have been probed by directly stimulating occipital cortex while monitoring EEG activity and perception. Interactions within the attention network have been probed by concurrently stimulating frontal or parietal areas. The use of tasks manipulating implicit and explicit memory has revealed in addition a role for attentional processes in memory. Taken together, these studies helped to reveal that visual selection relies on spontaneous intrinsic activity in visual cortex prior to the incoming stimulus, their control by attention, and post-stimulus processes incorporating a re-entrant bias from frontal and parietal areas that depends on the task.


Asunto(s)
Atención/fisiología , Mapeo Encefálico/psicología , Encéfalo/fisiología , Percepción Visual/fisiología , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Electroencefalografía/psicología , Potenciales Evocados Visuales/fisiología , Humanos , Vías Nerviosas/fisiología , Estimulación Magnética Transcraneal/métodos , Estimulación Magnética Transcraneal/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA