Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecology ; 100(3): e02589, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30801709

RESUMEN

Forest dynamics and tree species composition vary substantially between Paleotropical and Neotropical forests, but these broad biogeographic regions are treated uniformly in many land models. To assess whether these regional differences translate into variation in productivity and carbon (C) storage, we compiled a database of climate, tree stem growth, litterfall, aboveground net primary production (ANPP), and aboveground biomass across tropical rainforest sites spanning 33 countries throughout Central and South America, Asia, and Australasia, but excluding Africa due to a paucity of available data. Though the sum of litterfall and stem growth (ANPP) did not differ between regions, both stem growth and the ratio of stem growth to litterfall were higher in Paleotropical forests compared to Neotropical forests across the full observed range of ANPP. Greater C allocation to woody growth likely explains the much larger aboveground biomass estimates in Paleotropical forests (~29%, or ~80 Mg DW/ha, greater than in the Neotropics). Climate was similar in Paleo- and Neotropical forests, thus the observed differences in C likely reflect differences in the evolutionary history of species and forest structure and function between regions. Our analysis suggests that Paleotropical forests, which can be dominated by tall-statured Dipterocarpaceae species, may be disproportionate hotspots for aboveground C storage. Land models typically treat these distinct tropical forests with differential structures as a single functional unit, but our findings suggest that this may overlook critical biogeographic variation in C storage potential among regions.


Asunto(s)
Bosques , Clima Tropical , África , Asia , Biomasa , Carbono/análisis , América del Sur , Árboles
2.
Ecol Lett ; 20(6): 779-788, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28414883

RESUMEN

Tropical forests dominate global terrestrial carbon (C) exchange, and recent droughts in the Amazon Basin have contributed to short-term declines in terrestrial carbon dioxide uptake and storage. However, the effects of longer-term climate variability on tropical forest carbon dynamics are still not well understood. We synthesised field data from more than 150 tropical forest sites to explore how climate regulates tropical forest aboveground net primary productivity (ANPP) and organic matter decomposition, and combined those data with two existing databases to explore climate - C relationships globally. While previous analyses have focused on the effects of either temperature or rainfall on ANPP, our results highlight the importance of interactions between temperature and rainfall on the C cycle. In cool forests (< 20 °C), high rainfall slowed rates of C cycling, but in warm tropical forests (> 20 °C) it consistently enhanced both ANPP and decomposition. At the global scale, our analysis showed an increase in ANPP with rainfall in relatively warm sites, inconsistent with declines in ANPP with rainfall reported previously. Overall, our results alter our understanding of climate - C cycle relationships, with high precipitation accelerating rates of C exchange with the atmosphere in the most productive biome on earth.


Asunto(s)
Ciclo del Carbono , Temperatura , Clima Tropical , Carbono , Bosques , Suelo , Árboles
3.
New Phytol ; 214(4): 1506-1517, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28262951

RESUMEN

We hypothesized that dinitrogen (N2 )- and non-N2 -fixing tropical trees would have distinct phosphorus (P) acquisition strategies allowing them to exploit different P sources, reducing competition. We measured root phosphatase activity and arbuscular mycorrhizal (AM) colonization among two N2 - and two non-N2 -fixing seedlings, and grew them alone and in competition with different inorganic and organic P forms to assess potential P partitioning. We found an inverse relationship between root phosphatase activity and AM colonization in field-collected seedlings, indicative of a trade-off in P acquisition strategies. This correlated with the predominantly exploited P sources in the seedling experiment: the N2 fixer with high N2 fixation and root phosphatase activity grew best on organic P, whereas the poor N2 fixer and the two non-N2 fixers with high AM colonization grew best on inorganic P. When grown in competition, however, AM colonization, root phosphatase activity and N2 fixation increased in the N2 fixers, allowing them to outcompete the non-N2 fixers regardless of P source. Our results indicate that some tropical trees have the capacity to partition soil P, but this does not eliminate interspecific competition. Rather, enhanced P and N acquisition strategies may increase the competitive ability of N2 fixers relative to non-N2 fixers.


Asunto(s)
Fósforo/metabolismo , Bosque Lluvioso , Suelo/química , Árboles/fisiología , Costa Rica , Fabaceae/fisiología , Moraceae/fisiología , Micorrizas , Fijación del Nitrógeno , Monoéster Fosfórico Hidrolasas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantones/fisiología , Especificidad de la Especie , Clima Tropical
4.
Ecol Appl ; 26(8): 2449-2462, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27874999

RESUMEN

Distributions of foliar nutrients across forest canopies can give insight into their plant functional diversity and improve our understanding of biogeochemical cycling. We used airborne remote sensing and partial least squares regression to quantify canopy foliar nitrogen (foliar N) across ~164 km2 of wet lowland tropical forest in the Osa Peninsula, Costa Rica. We determined the relative influence of climate and topography on the observed patterns of foliar N using a gradient boosting model technique. At a local scale, where climate and substrate were constant, we explored the influence of slope position on foliar N by quantifying foliar N on remnant terraces, their adjacent slopes, and knife-edged ridges. In addition, we climbed and sampled 540 trees and analyzed foliar N in order to quantify the role of species identity (phylogeny) and environmental factors in predicting foliar N. Observed foliar N heterogeneity reflected environmental factors working at multiple spatial scales. Across the larger landscape, elevation and precipitation had the highest relative influence on predicting foliar N (30% and 24%), followed by soils (15%), site exposure (9%), compound topographic index (8%), substrate (6%), and landscape dissection (6%). Phylogeny explained ~75% of the variation in the field collected foliar N data, suggesting that phylogeny largely underpins the response to the environmental factors. Taken together, these data suggest that a large fraction of the variance in foliar N across the landscape is proximately driven by species composition, though ultimately this is likely a response to abiotic factors such as climate and topography. Future work should focus on the mechanisms and feedbacks involved, and how shifts in climate may translate to changes in forest function.


Asunto(s)
Nitrógeno , Hojas de la Planta , Costa Rica , Bosques , Árboles , Clima Tropical
5.
Ecology ; 96(5): 1229-41, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26236837

RESUMEN

Observations of high dissolved inorganic nitrogen (DIN) concentrations in stream water have reinforced the notion that primary tropical rain forests cycle nitrogen (N) in relative excess compared to phosphorus. Here we test this notion by evaluating hydrologic N export from a small watershed on the Osa Peninsula, Costa Rica, where prior research has shown multiple indicators of conservative N cycling throughout the ecosystem. We repeatedly measured a host of factors known to influence N export for one year, including stream water chemistry and upslope litterfall, soil N availability and net N processing rates, and soil solution chemistry at the surface, 15- and 50-cm depths. Contrary to prevailing assumptions about the lowland N cycle, we find that dissolved organic nitrogen (DON) averaged 85% of dissolved N export for 48 of 52 consecutive weeks. For most of the year stream water nitrate (NO3-) export was very low, which reflected minimal net N processing and DIN leaching from upslope soils. Yet, for one month in the dry season, NO3- was the major component of N export due to a combination of low flows and upslope nitrification that concentrated NO3- in stream water. Particulate organic N (PON) export was much larger than dissolved forms at 14.6 kg N x ha(-1) x yr(-1), driven by soil erosion during storms. At this rate, PON export was slightly greater than estimated inputs from free-living N fixation and atmospheric N deposition, which suggests that erosion-driven PON export could constrain ecosystem level N stocks over longer timescales. This phenomenon is complimentary to the "DON leak" hypothesis, which postulates that the long-term accumulation of ecosystem N in unpolluted ecosystems is constrained by the export of organic N independently of biological N demand. Using an established global sediment generation model, we illustrate that PON erosion may be an important vector for N loss in tropical landscapes that are geomorphically active. This study supports an emerging view that landscape geomorphology influences nutrient biogeochemistry and limitation, though more research is needed to understand the mechanisms and spatial significance of erosional N loss from terrestrial ecosystems.


Asunto(s)
Ecosistema , Nitrógeno/química , Clima Tropical , Movimientos del Agua , Animales , Costa Rica , Sedimentos Geológicos , Lluvia , Estaciones del Año , Suelo/química , Factores de Tiempo
6.
PLoS One ; 9(5): e95757, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24824838

RESUMEN

Primary production in freshwater ecosystems is often limited by the availability of phosphorus (P), nitrogen (N), or a combination of both (NP co-limitation). While N fixation via heterocystous cyanobacteria can supply additional N, no comparable mechanism for P exists; hence P is commonly considered to be the predominant and ultimate limiting nutrient in freshwater ecosystems. However, N limitation can be maintained if P is supplied in stoichiometric excess of N (including N fixation). The main objective of this study was to examine patterns in nutrient limitation across a series of 21 vernal ponds in Eastern Colorado where high P fluxes are common. Across all ponds, water column dissolved inorganic N steadily decreased throughout the growth season due to biological demand while total dissolved P remained stable. The water column dissolved inorganic N to total dissolved P ratios suggested a transition from NP co-limitation to N limitation across the growth season. Periphyton and phytoplankton %C was strongly correlated with %N while %P was assimilated in excess of %N and %C in many ponds. Similarly, in nutrient addition bottle assays algae responded more strongly to N additions (11 out of 18 water bodies) than P additions (2 out of 18 water bodies) and responded most strongly when N and P were added in concert (12 out of 18 water bodies). Of the ponds that responded to nutrient addition, 92% exhibited some sort of N limitation while less than 8% were limited by P alone. Despite multiple lines of evidence for N limitation or NP co-limitation, N fixation rates were uniformly low across most ponds, most likely due to inhibition by water column nitrate. Within this set of 18 water bodies, N limitation or NP co-limitation is widespread due to the combination high anthropogenic P inputs and constrained N fixation rates.


Asunto(s)
Cianobacterias/efectos de los fármacos , Nitrógeno/análisis , Fitoplancton/efectos de los fármacos , Estanques/química , Colorado , Cianobacterias/crecimiento & desarrollo , Ecosistema , Nitrógeno/farmacología , Fijación del Nitrógeno/efectos de los fármacos , Fósforo/análisis , Fósforo/farmacología , Fitoplancton/crecimiento & desarrollo
7.
Glob Chang Biol ; 18(9): 2969-79, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24501071

RESUMEN

Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C-rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (-22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.

8.
Nature ; 464(7292): 1178-81, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20414306

RESUMEN

The production of artificial fertilizers, fossil fuel use and leguminous agriculture worldwide has increased the amount of reactive nitrogen in the natural environment by an order of magnitude since the Industrial Revolution. This reorganization of the nitrogen cycle has led to an increase in food production, but increasingly causes a number of environmental problems. One such problem is the accumulation of nitrate in both freshwater and coastal marine ecosystems. Here we establish that ecosystem nitrate accrual exhibits consistent and negative nonlinear correlations with organic carbon availability along a hydrologic continuum from soils, through freshwater systems and coastal margins, to the open ocean. The trend also prevails in ecosystems subject to substantial human alteration. Across this diversity of environments, we find evidence that resource stoichiometry (organic carbon:nitrate) strongly influences nitrate accumulation by regulating a suite of microbial processes that couple dissolved organic carbon and nitrate cycling. With the help of a meta-analysis we show that heterotrophic microbes maintain low nitrate concentrations when organic carbon:nitrate ratios match the stoichiometric demands of microbial anabolism. When resource ratios drop below the minimum carbon:nitrogen ratio of microbial biomass, however, the onset of carbon limitation appears to drive rapid nitrate accrual, which may then be further enhanced by nitrification. At low organic carbon:nitrate ratios, denitrification appears to constrain the extent of nitrate accretion, once organic carbon and nitrate availability approach the 1:1 stoichiometry of this catabolic process. Collectively, these microbial processes express themselves on local to global scales by restricting the threshold ratios underlying nitrate accrual to a constrained stoichiometric window. Our findings indicate that ecological stoichiometry can help explain the fate of nitrate across disparate environments and in the face of human disturbance.


Asunto(s)
Carbono/metabolismo , Ecosistema , Nitratos/metabolismo , Agua de Mar/química , Suelo/análisis , Bacterias/metabolismo , Biomasa , Carbono/análisis , Clima , Agua Dulce/química , Biología del Agua Dulce , Biología Marina , Nitratos/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Océanos y Mares , Plancton/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...