Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 128(22): 7126-7, 2006 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-16734442

RESUMEN

Transition state analogues of PNP, the Immucillins and DADMe-Immucillins, were designed to match transition state features of bovine and human PNPs, respectively. The inhibitors with or without the hydroxyl and hydroxymethyl groups of the substrate demonstrate that inhibitor geometry mimicking that of the transition state confers binding affinity discrimination. This finding is remarkable since crystallographic analysis indicates complete conservation of active site residues and contacts to ligands in human and bovine PNPs.


Asunto(s)
Inhibidores Enzimáticos , Purina-Nucleósido Fosforilasa/química , Animales , Arseniatos/química , Bovinos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Eritrocitos/enzimología , Humanos , Ratones , Estructura Molecular , Unión Proteica , Nucleósidos de Purina/química , Purina-Nucleósido Fosforilasa/antagonistas & inhibidores , Pirimidinonas/química , Pirrolidinas/química
2.
Org Biomol Chem ; 4(6): 1131-9, 2006 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-16525558

RESUMEN

(1R)-1-(9-Deazahypoxanthin-9-yl)-1,4-dideoxy-1,4-imino-L-ribitol [(+)-5] and (3S,4S)-1-[(9-deazahypoxanthin-9-yl)methyl]-4-(hydroxymethyl)pyrrolidin-3-ol [(-)-6] are the L-enantiomers of immucillin-H (D-ImmH) and DADMe-immucillin-H (D-DADMe-ImmH), respectively, these D-isomers being high affinity transition state analogue inhibitors of purine nucleoside phosphorylases (PNPases) developed as potential pharmaceuticals against diseases involving irregular activation of T-cells. The C-nucleoside hydrochloride D-ImmH [(-)-5) x HCl], now "Fodosine" is in phase II clinical trials as an anti-T-cell leukaemia agent, while D-DADMe-ImmH is a second generation inhibitor with extreme binding to the target enzyme and has entered the clinic for phase I testing as an anti-psoriasis drug. Since the enantiomers of some pharmaceuticals have revealed surprising biological activities, the L-nucleoside analogues (+)-5 x HCl and (-)-6, respectively, of D-ImmH and D-DADMe-ImmH, were prepared and their PNPase binding properties were studied. For the synthesis of compound (-)-6 suitable enzyme-based routes to the enantiomerically pure starting material (3S,4S)-4-(hydroxymethyl)pyrrolidin-3-ol [(-)-6] and its enantiomer were developed. The L-enantiomers (+)-5 x HCl and (-)-6 bind to the PNPases approximately 5- to 600-times less well than do the D-compounds, but nevertheless remain powerful inhibitors with nanomolar dissociation constants.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Purina-Nucleósido Fosforilasa/antagonistas & inhibidores , Indicadores y Reactivos , Cinética , Modelos Moleculares , Conformación Molecular , Nucleósidos de Purina/química , Nucleósidos de Purina/farmacología , Pirimidinonas/química , Pirimidinonas/farmacología , Pirrolidinas/química , Pirrolidinas/farmacología , Estereoisomerismo
3.
Curr Top Med Chem ; 5(13): 1237-58, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16305529

RESUMEN

Purine nucleoside phosphorylase (PNP), an enzyme involved in the catabolism and recycling of nucleosides, is under investigation for the development of novel antibiotics. One method used for the design of inhibitors is transition state analysis. Chemically stable analogues of a transition state complex are predicted to convert the energy of enzymatic rate acceleration (kcat/k(non)) into binding energy. Transition state structures have been reported for the bovine (Bos taurus), human (Homo sapiens), and malarial (Plasmodium falciparum) PNPs. All three enzymes proceed through S(N)1-like mechanisms and have transition states with substantial ribooxocarbenium ion character. Bovine PNP proceeds through an early S(N)1-like transition state, whereas the human and malarial PNPs proceed through more dissociative transition state. Transition state analogues developed for PNP exhibit differential inhibition specificity for these three enzymes based upon their distinct reaction rates (kcat), mechanisms, and substrate specificity. The most powerful inhibitors of these three enzymes have picomolar dissociation constants, two of which are Immucillin-H and DADMe-Immucillin-H. MT-Immucillin-H was also developed as a specific inhibitor for P. falciparum PNP by virtue of its unique utilization of 5'-methylthio substrates. Although the transition state for tuberculosis (Mycobacterium tuberculosis) PNP is yet to be determined, inhibition values support a mechanism with a dissociative transition state like those of its human and plasmodial counterparts. Comparison of the transition states and substrate specificity of various PNPs permits the design of species-specific inhibitors for use as therapeutic agents.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Purina-Nucleósido Fosforilasa/antagonistas & inhibidores , Purina-Nucleósido Fosforilasa/química , Pirimidinonas/farmacología , Pirrolidinas/farmacología , Animales , Sitios de Unión , Catálisis , Inhibidores Enzimáticos/química , Humanos , Datos de Secuencia Molecular , Filogenia , Plasmodium falciparum/enzimología , Purina-Nucleósido Fosforilasa/metabolismo , Pirimidinonas/química , Pirrolidinas/química , Alineación de Secuencia , Especificidad de la Especie , Relación Estructura-Actividad
4.
Biochemistry ; 43(19): 5716-27, 2004 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-15134446

RESUMEN

Divergent evolution of enzyme function is commonly explained by a gene duplication event followed by mutational changes that allow the protein encoded by the copy to acquire a new function. An alternate hypothesis is that this process is facilitated when the progenitor enzyme acquires a second function while maintaining the original activity. This phenomenon has been suggested to occur in the o-succinylbenzoate synthase (OSBS) from a species of Amycolatopsis that catalyzes not only the physiological syn-dehydration reaction of 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate but also an accidental racemization of N-acylamino acids [Palmer, D. R., Garrett, J. B., Sharma, V., Meganathan, R., Babbitt, P. C., and Gerlt, J. A. (1999) Biochemistry 38, 4252-4258]. To understand the molecular basis of this promiscuity, three-dimensional structures of liganded complexes of this enzyme have been determined, including the product of the OSBS reaction and three N-acylamino acid substrates for the N-acylamino acid racemase (NAAAR) reaction, N-acetylmethionine, N-succinylmethionine, and N-succinylphenylglycine, to 2.2, 2.3, 2.1, and 1.9 A resolution, respectively. These structures show how the active-site cavity can accommodate both the hydrophobic substrate for the OSBS reaction and the substrates for the accidental NAAAR reaction. As expected, the N-acylamino acid is sandwiched between lysines 163 and 263, which function as the catalytic bases for the abstraction of the alpha-proton in the (R)- and (S)-racemization reactions, respectively [Taylor Ringia, E. A., Garrett, J. B, Thoden, J. B., Holden, H. M., Rayment, I., and Gerlt, J. A. (2004) Biochemistry 42, 224-229]. Importantly, the protein forms specific favorable interactions with the hydrophobic amino acid side chain, alpha-carbon, carboxylate, and the polar components of the N-acyl linkage. Accommodation of the components of the N-acyl linkage appears to be the reason that this enzyme is capable of a racemization reaction on these substrates, whereas the orthologous OSBS from Escherichia coli lacks this functionality.


Asunto(s)
Actinomycetales/enzimología , Evolución Molecular , Metionina/análogos & derivados , Complejos Multienzimáticos/química , Fosfopiruvato Hidratasa/química , Homología Estructural de Proteína , Succinato-CoA Ligasas/química , Acilcoenzima A/química , Acilcoenzima A/metabolismo , Acilación , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Activación Enzimática , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Metionina/química , Metionina/metabolismo , Complejos Multienzimáticos/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Unión Proteica , Especificidad por Sustrato , Succinato-CoA Ligasas/metabolismo
5.
Biochemistry ; 43(1): 224-9, 2004 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-14705949

RESUMEN

o-Succinylbenzoate synthase (OSBS) from Amycolatopsis, a member of the enolase superfamily, catalyzes the Mn2+-dependent exergonic dehydration of 2-succinyl-6R-hydroxy-2,4-cyclohexadiene-1R-carboxylate (SHCHC) to 4-(2'-carboxylphenyl)-4-oxobutyrate (o-succinylbenzoate or OSB) in the menaquinone biosynthetic pathway. This enzyme first was identified as an N-acylamino acid racemase (NAAAR), with the optimal substrates being the enantiomers of N-acetyl methionine. This laboratory subsequently discovered that this protein is a much better catalyst of the OSBS reaction, with the value of k(cat)/K(M), for dehydration, 2.5 x 10(5) M(-1) s(-1), greatly exceeding that for 1,1-proton transfer using the enantiomers of N-acetylmethionine as substrate, 3.1 x 10(2) M(-1) s(-1) [Palmer, D. R., Garrett, J. B., Sharma, V., Meganathan, R., Babbitt, P. C., and Gerlt, J. A. (1999) Biochemistry 38, 4252-8]. The efficiency of the promiscuous NAAAR reaction is enhanced with alternate substrates whose structures mimic that of the SHCHC substrate for the OSBS reaction, for example, the value of k(cat)/K(M) for the enantiomers of N-succinyl phenylglycine, 2.0 x 10(5) M(-1) s(-1), is comparable to that for the OSBS reaction. The mechanisms of the NAAAR and OSBS reactions have been explored using mutants of Lys 163 and Lys 263 (K163A/R/S and K263A/R/S), the putative acid/base catalysts identified by sequence alignments with other OSBSs, including the structurally characterized OSBS from Escherichia coli. Although none of the mutants display detectable OSBS or NAAAR activities, K163R and K163S catalyze stereospecific exchange of the alpha-hydrogen of N-succinyl-(S)-phenylglycine with solvent hydrogen, and K263R and K263 catalyze the stereospecific exchange the alpha-hydrogen of N-succinyl-(R)-phenylglycine, consistent with formation of a Mn2+-stabilized enolate anion intermediate. The rates of the exchange reactions catalyzed by the wild-type enzyme exceed those for racemization. That this enzyme can catalyze two different reactions, each involving a stabilized enediolate anion intermediate, supports the hypothesis that evolution of function in the enolase superfamily proceeds by pathways involving functional promiscuity.


Asunto(s)
Actinomycetales/enzimología , Proteínas Bacterianas/química , Liasas de Carbono-Carbono/química , Evolución Molecular , Fosfopiruvato Hidratasa/química , Actinomycetales/genética , Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/genética , Proteínas Bacterianas/genética , Sitios de Unión/genética , Liasas de Carbono-Carbono/genética , Catálisis , Activación Enzimática/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrógeno/química , Concentración de Iones de Hidrógeno , Cinética , Mutagénesis Sitio-Dirigida , Fosfopiruvato Hidratasa/genética , Homología de Secuencia de Aminoácido , Solventes , Especificidad por Sustrato/genética
6.
Biochemistry ; 42(49): 14427-33, 2003 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-14661953

RESUMEN

o-Succinylbenzoate synthase (OSBS) from Escherichia coli, a member of the enolase superfamily, catalyzes an exergonic dehydration reaction in the menaquinone biosynthetic pathway in which 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) is converted to 4-(2'-carboxyphenyl)-4-oxobutyrate (o-succinylbenzoate or OSB). Our previous structural studies of the Mg(2+).OSB complex established that OSBS is a member of the muconate lactonizing enzyme subgroup of the superfamily: the essential Mg(2+) is coordinated to carboxylate ligands at the ends of the third, fourth, and fifth beta-strands of the (beta/alpha)(7)beta-barrel catalytic domain, and the OSB product is located between the Lys 133 at the end of the second beta-strand and the Lys 235 at the end of the sixth beta-strand [Thompson, T. B., Garrett, J. B., Taylor, E. A, Meganathan, R., Gerlt, J. A., and Rayment, I. (2000) Biochemistry 39, 10662-76]. Both Lys 133 and Lys 235 were separately replaced with Ala, Ser, and Arg residues; all six mutants displayed no detectable catalytic activity. The structure of the Mg(2+).SHCHC complex of the K133R mutant has been solved at 1.62 A resolution by molecular replacement starting from the structure of the Mg(2+).OSB complex. This establishes the absolute configuration of SHCHC: the C1-carboxylate and the C6-OH leaving group are in a trans orientation, requiring that the dehydration proceed via a syn stereochemical course. The side chain of Arg 133 is pointed out of the active site so that it cannot function as a general base, whereas in the wild-type enzyme complexed with Mg(2+).OSB, the side chain of Lys 133 is appropriately positioned to function as the only acid/base catalyst in the syn dehydration. The epsilon-ammonium group of Lys 235 forms a cation-pi interaction with the cyclohexadienyl moiety of SHCHC, suggesting that Lys 235 also stabilizes the enediolate anion intermediate in the syn dehydration via a similar interaction.


Asunto(s)
Liasas de Carbono-Carbono/química , Liasas de Carbono-Carbono/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolución Molecular , Mutagénesis Sitio-Dirigida , Fosfopiruvato Hidratasa/química , Fosfopiruvato Hidratasa/genética , Sustitución de Aminoácidos/genética , Sitios de Unión/genética , Liasas de Carbono-Carbono/metabolismo , Catálisis , Dicroismo Circular , Cristalografía por Rayos X , Ciclohexanos , Proteínas de Escherichia coli/metabolismo , Cinética , Fosfopiruvato Hidratasa/metabolismo , Salicilatos/química , Salicilatos/metabolismo , Succinatos/química , Succinatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...