Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 8(10): 1787-1798, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37770747

RESUMEN

Since 2016, Yemen has been experiencing the largest cholera outbreak in modern history. Multidrug resistance (MDR) emerged among Vibrio cholerae isolates from cholera patients in 2018. Here, to characterize circulating genotypes, we analysed 260 isolates sampled in Yemen between 2018 and 2019. Eighty-four percent of V. cholerae isolates were serogroup O1 belonging to the seventh pandemic El Tor (7PET) lineage, sub-lineage T13, whereas 16% were non-toxigenic, from divergent non-7PET lineages. Treatment of severe cholera with macrolides between 2016 and 2019 coincided with the emergence and dominance of T13 subclones carrying an incompatibility type C (IncC) plasmid harbouring an MDR pseudo-compound transposon. MDR plasmid detection also in endemic non-7PET V. cholerae lineages suggested genetic exchange with 7PET epidemic strains. Stable co-occurrence of the IncC plasmid with the SXT family of integrative and conjugative element in the 7PET background has major implications for cholera control, highlighting the importance of genomic epidemiological surveillance to limit MDR spread.


Asunto(s)
Cólera , Vibrio cholerae O1 , Humanos , Cólera/epidemiología , Vibrio cholerae O1/genética , Yemen/epidemiología , Plásmidos/genética , Genómica
2.
Nat Commun ; 14(1): 3773, 2023 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355673

RESUMEN

Ongoing diarrheal disease surveillance throughout Bangladesh over the last decade has revealed seasonal localised cholera outbreaks in Cox's Bazar, where both Bangladeshi Nationals and Forcibly Displaced Myanmar Nationals (FDMNs) reside in densely populated settlements. FDMNs were recently targeted for the largest cholera vaccination campaign in decades. We aimed to infer the epidemic risk of circulating Vibrio cholerae strains by determining if isolates linked to the ongoing global cholera pandemic ("7PET" lineage) were responsible for outbreaks in Cox's Bazar. We found two sublineages of 7PET in this setting during the study period; one with global distribution, and a second lineage restricted to Asia and the Middle East. These subclades were associated with different disease patterns that could be partially explained by genomic differences. Here we show that as the pandemic V. cholerae lineage circulates in this vulnerable population, without a vaccine intervention, the risk of an epidemic was very high.


Asunto(s)
Cólera , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Cólera/epidemiología , Cólera/prevención & control , Bangladesh/epidemiología , Genómica , Programas de Inmunización , Pandemias
3.
Nat Commun ; 13(1): 3864, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790755

RESUMEN

Cholera is a life-threatening infectious disease that remains an important public health issue in several low and middle-income countries. In 1992, a newly identified O139 Vibrio cholerae temporarily displaced the O1 serogroup. No study has been able to answer why the potential eighth cholera pandemic (8CP) causing V. cholerae O139 emerged so successfully and then died out. We conducted a genomic study, including 330 O139 isolates, covering emergence of the serogroup in 1992 through to 2015. We noted two key genomic evolutionary changes that may have been responsible for the disappearance of genetically distinct but temporally overlapping waves (A-C) of O139. Firstly, as the waves progressed, a switch from a homogenous toxin genotype in wave-A to heterogeneous genotypes. Secondly, a gradual loss of antimicrobial resistance (AMR) with the progression of waves. We hypothesize that these two changes contributed to the eventual epidemiological decline of O139.


Asunto(s)
Cólera , Vibrio cholerae O139 , Vibrio cholerae , Cólera/epidemiología , Toxina del Cólera/genética , Humanos , Pandemias , Vibrio cholerae/genética , Vibrio cholerae O139/genética
4.
Pathogens ; 10(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34959498

RESUMEN

Chlamydia pecorum, an obligate intracellular pathogen, causes significant morbidity and mortality in livestock and the koala (Phascolarctos cinereus). A variety of C. pecorum gene-centric molecular studies have revealed important observations about infection dynamics and genetic diversity in both koala and livestock hosts. In contrast to a variety of C. pecorum molecular studies, to date, only four complete and 16 draft genomes have been published. Of those, only five draft genomes are from koalas. Here, using whole-genome sequencing and a comparative genomics approach, we describe the first two complete C. pecorum genomes collected from diseased koalas. A de novo assembly of DBDeUG_2018 and MC/MarsBar_2018 resolved the chromosomes and chlamydial plasmids each as single, circular contigs. Robust phylogenomic analyses indicate biogeographical separation between strains from northern and southern koala populations, and between strains infecting koala and livestock hosts. Comparative genomics between koala strains identified new, unique, and shared loci that accumulate single-nucleotide polymorphisms and separate between northern and southern, and within northern koala strains. Furthermore, we predicted novel type III secretion system effectors. This investigation constitutes a comprehensive genome-wide comparison between C. pecorum from koalas and provides improvements to annotations of a C. pecorum reference genome. These findings lay the foundations for identifying and understanding host specificity and adaptation behind chlamydial infections affecting koalas.

5.
PLoS Negl Trop Dis ; 15(10): e0009748, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34648506

RESUMEN

BACKGROUND: The proportion of enteric fever cases caused by Salmonella Paratyphi A is increasing and may increase further as we begin to introduce typhoid conjugate vaccines (TCVs). While numerous epidemiological and genomic studies have been conducted for S. Typhi, there are limited data describing the genomic epidemiology of S. Paratyphi A in especially in endemic settings, such as Bangladesh. PRINCIPAL FINDINGS: We conducted whole genome sequencing (WGS) of 67 S. Paratyphi A isolated between 2008 and 2018 from eight enteric disease surveillance sites across Bangladesh. We performed a detailed phylogenetic analysis of these sequence data incorporating sequences from 242 previously sequenced S. Paratyphi A isolates from a global collection and provided evidence of lineage migration from neighboring countries in South Asia. The data revealed that the majority of the Bangladeshi S. Paratyphi A isolates belonged to the dominant global lineage A (67.2%), while the remainder were either lineage C (19.4%) or F (13.4%). The population structure was relatively homogenous across the country as we did not find any significant lineage distributions between study sites inside or outside Dhaka. Our genomic data showed presence of single point mutations in gyrA gene either at codon 83 or 87 associated with decreased fluoroquinolone susceptibility in all Bangladeshi S. Paratyphi A isolates. Notably, we identified the pHCM2- like cryptic plasmid which was highly similar to S. Typhi plasmids circulating in Bangladesh and has not been previously identified in S. Paratyphi A organisms. SIGNIFICANCE: This study demonstrates the utility of WGS to monitor the ongoing evolution of this emerging enteric pathogen. Novel insights into the genetic structure of S. Paratyphi A will aid the understanding of both regional and global circulation patterns of this emerging pathogen and provide a framework for future genomic surveillance studies.


Asunto(s)
Salmonella paratyphi A/genética , Fiebre Tifoidea/microbiología , Proteínas Bacterianas/genética , Bangladesh/epidemiología , Preescolar , Femenino , Variación Genética , Humanos , Lactante , Masculino , Filogenia , Mutación Puntual , Polimorfismo de Nucleótido Simple , Salmonella paratyphi A/clasificación , Salmonella paratyphi A/aislamiento & purificación , Fiebre Tifoidea/epidemiología , Secuenciación Completa del Genoma
6.
Microb Genom ; 7(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34559043

RESUMEN

The pan-genome is defined as the combined set of all genes in the gene pool of a species. Pan-genome analyses have been very useful in helping to understand different evolutionary dynamics of bacterial species: an open pan-genome often indicates a free-living lifestyle with metabolic versatility, while closed pan-genomes are linked to host-restricted, ecologically specialized bacteria. A detailed understanding of the species pan-genome has also been instrumental in tracking the phylodynamics of emerging drug resistance mechanisms and drug-resistant pathogens. However, current approaches to analyse a species' pan-genome do not take the species population structure into account, nor do they account for the uneven sampling of different lineages, as is commonplace due to over-sampling of clinically relevant representatives. Here we present the application of a population structure-aware approach for classifying genes in a pan-genome based on within-species distribution. We demonstrate our approach on a collection of 7500 Escherichia coli genomes, one of the most-studied bacterial species and used as a model for an open pan-genome. We reveal clearly distinct groups of genes, clustered by different underlying evolutionary dynamics, and provide a more biologically informed and accurate description of the species' pan-genome.


Asunto(s)
Bacterias/genética , Evolución Molecular , Genoma Bacteriano , Escherichia coli/genética , Transferencia de Gen Horizontal , Genómica , Familia de Multigenes , Filogenia
7.
Microb Genom ; 7(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34550065

RESUMEN

The Salmonella enterica serotype Paratyphi B complex causes a wide range of diseases, from gastroenteritis to paratyphoid fever, depending on the biotypes Java and sensu stricto. The burden of Paratyphi B biotypes in Bangladesh is still unknown, as these are indistinguishable by Salmonella serotyping. Here, we conducted the first whole-genome sequencing (WGS) study on 79 Salmonella isolates serotyped as Paratyphi B that were collected from 10 nationwide enteric disease surveillance sites in Bangladesh. Placing these in a global genetic context revealed that these are biotype Java, and the addition of these genomes expanded the previously described PG4 clade containing Bangladeshi and UK isolates. Importantly, antimicrobial resistance (AMR) genes were scarce amongst Bangladeshi S. Java isolates, somewhat surprisingly given the widespread availability of antibiotics without prescription. This genomic information provides important insights into the significance of S. Paratyphi B biotypes in enteric disease and their implications for public health.


Asunto(s)
Infecciones por Salmonella/microbiología , Salmonella/clasificación , Salmonella/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Bangladesh/epidemiología , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Fiebre Paratifoidea/epidemiología , Salmonella/aislamiento & purificación , Infecciones por Salmonella/epidemiología , Serogrupo , Serotipificación , Reino Unido/epidemiología , Secuenciación Completa del Genoma , Adulto Joven
8.
Transbound Emerg Dis ; 66(3): 1132-1137, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30873753

RESUMEN

Chlamydiae are globally widespread obligate intracellular bacteria, which several species are a well-recognized threat to human and animal health. In Australia, the most successful chlamydial species are the infamous koala pathogen C. pecorum, and C. psittaci, an emerging pathogen associated with zoonotic events. Little is known about infections caused by other chlamydial organisms in Australian livestock or wildlife. Considering that these hosts can be encountered by humans at the animal/human interface, in this study, we investigated genetic diversity of chlamydial organisms infecting Australian domesticated and wild ungulates. A total of 185 samples from 129 domesticated (cattle, horses, sheep, and pigs) and 29 wild (deer) ungulate hosts were screened with C. pecorum and C. psittaci species-specific assays, followed by a screen with pan-Chlamydiales assay. Overall, chlamydial DNA was detected in 120/185 (65%) samples, including all ungulate hosts. Species-specific assays further revealed that C. pecorum and C. psittaci DNA were detected in 27% (50/185) and 6% (11/185) of the samples, respectively, however from domesticated hosts only. A total of 46 "signature" 16S rRNA sequences were successfully resolved by sequencing and were used for phylogenetic analyses. Sequence analyses revealed that genetically diverse novel as well as traditional chlamydial organisms infect an expanded range of ungulate hosts in Australia. Detection of the C. psittaci and C. pecorum in livestock, and novel taxa infecting horses and deer raises questions about the genetic make-up and pathogenic potential of these organisms, but also concerns about risks of spill-over between livestock, humans, and native wildlife.


Asunto(s)
Infecciones por Chlamydia/veterinaria , Chlamydia/genética , Variación Genética , Animales , Animales Salvajes , Australia/epidemiología , Bovinos , Chlamydia/clasificación , Infecciones por Chlamydia/epidemiología , Infecciones por Chlamydia/microbiología , Ciervos , Caballos , Humanos , Ganado , Filogenia , ARN Ribosómico 16S/genética , Ovinos , Porcinos
9.
PLoS One ; 14(1): e0206958, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30673712

RESUMEN

Increasing human population size and the concomitant expansion of urbanisation significantly impact natural ecosystems and native fauna globally. Successful conservation management relies on precise information on the factors associated with wildlife population decline, which are challenging to acquire from natural populations. Wildlife Rehabilitation Centres (WRC) provide a rich source of this information. However, few researchers have conducted large-scale longitudinal studies, with most focussing on narrow taxonomic ranges, suggesting that WRC-associated data remains an underutilised resource, and may provide a fuller understanding of the anthropogenic threats facing native fauna. We analysed admissions and outcomes data from a WRC in Queensland, Australia Zoo Wildlife Hospital, to determine the major factors driving admissions and morbidity of native animals in a region experiencing rapid and prolonged urban expansion. We studied 31,626 admissions of 83 different species of native birds, reptiles, amphibians, marsupials and eutherian mammals from 2006 to 2017. While marsupial admissions were highest (41.3%), admissions increased over time for all species and exhibited seasonal variation (highest in Spring to Summer), consistent with known breeding seasons. Causes for admission typically associated with human influenced activities were dominant and exhibited the highest mortality rates. Car strikes were the most common reason for admission (34.7%), with dog attacks (9.2%), entanglements (7.2%), and cat attacks (5.3%) also high. Admissions of orphaned young and overt signs of disease were significant at 24.6% and 9.7%, respectively. Mortality rates were highest following dog attacks (72.7%) and car strikes (69.1%) and lowest in orphaned animals (22.1%). Our results show that WRC databases offer rich opportunities for wildlife monitoring and provide quantification of the negative impacts of human activities on ecosystem stability and wildlife health. The imminent need for urgent, proactive conservation management to ameliorate the negative impacts of human activities on wildlife is clearly evident from our results.


Asunto(s)
Animales Salvajes/fisiología , Animales de Zoológico/fisiología , Actividades Humanas , Animales , Australia , Geografía , Hospitales Veterinarios , Humanos , Oportunidad Relativa , Riesgo , Estaciones del Año , Especificidad de la Especie
10.
Genome Biol Evol ; 10(10): 2587-2595, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30202970

RESUMEN

Chlamydiae are an example of obligate intracellular bacteria that possess highly reduced, compact genomes (1.0-3.5 Mbp), reflective of their abilities to sequester many essential nutrients from the host that they no longer need to synthesize themselves. The Chlamydiae is a phylum with a very wide host range spanning mammals, birds, fish, invertebrates, and unicellular protists. This ecological and phylogenetic diversity offers ongoing opportunities to study intracellular survival and metabolic pathways and adaptations. Of particular evolutionary significance are Chlamydiae from the recently proposed Ca. Parilichlamydiaceae, the earliest diverging clade in this phylum, species of which are found only in aquatic vertebrates. Gill extracts from three Chlamydiales-positive Australian aquaculture species (Yellowtail kingfish, Striped trumpeter, and Barramundi) were subject to DNA preparation to deplete host DNA and enrich microbial DNA, prior to metagenome sequencing. We assembled chlamydial genomes corresponding to three Ca. Parilichlamydiaceae species from gill metagenomes, and conducted functional genomics comparisons with diverse members of the phylum. This revealed highly reduced genomes more similar in size to the terrestrial Chlamydiaceae, standing in contrast to members of the Chlamydiae with a demonstrated cosmopolitan host range. We describe a reduction in genes encoding synthesis of nucleotides and amino acids, among other nutrients, and an enrichment of predicted transport proteins. Ca. Parilichlamydiaceae share 342 orthologs with other chlamydial families. We hypothesize that the genome reduction exhibited by Ca. Parilichlamydiaceae and Chlamydiaceae is an example of within-phylum convergent evolution. The factors driving these events remain to be elucidated.


Asunto(s)
Evolución Biológica , Chlamydiales/genética , Chlamydiales/metabolismo , Metagenoma , Perciformes/microbiología , Animales , Flujo Genético , Genoma Bacteriano , Branquias/microbiología , Proteínas de Transporte de Membrana/metabolismo
11.
Transbound Emerg Dis ; 65(6): 1436-1446, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29790651

RESUMEN

Epitheliocystis is a skin and gill disease in fish caused by pathogenic intracellular bacteria. The disease has been reported in at least 90 species of marine and freshwater fish in both the southern and northern hemispheres. It affects a number of commercially important aquaculture species, including salmon, kingfish and bream. In infected fish, cysts typically develop in the gill epithelia, promoting the fusion of gill lamellae. Infections can lead to respiratory distress and death, particularly in cultured and juvenile fish with cases rarely reported in wild fish. Modern molecular techniques are challenging the conventional wisdoms regarding the epidemiology of epitheliocystis, showing now that a number of distinct bacterial pathogens from completely different phyla can cause this disease. Here, we review the state of knowledge, including updates on aetiology, host range, diagnosis and treatments. Traditionally, bacteria from the phylum Chlamydiae were the only known pathogenic agents of epitheliocystis, but aetiology is now recognized as being more complex, including a range of Proteobacteria. Notwithstanding recent advances in identifying the pathogens, the reservoirs and modes of transmission remain largely unknown. Recent genome sequencing of the growing number of epitheliocystis agents suggests that many bacteria causing this disease are unique to individual species of fish. Environmental conditions that approach or exceed animals' physiological tolerances (e.g. atypical temperature, salinity or pH levels) are thought to contribute to disease development and progression. Empirical data and evidence concerning epidemiology, aetiology and treatments are, however, in many cases limited, highlighting the need for more work to better characterize this disease across the different hosts and locales affected.


Asunto(s)
Acuicultura , Infecciones Bacterianas/veterinaria , Betaproteobacteria/aislamiento & purificación , Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades de los Peces/microbiología , Animales , Infecciones Bacterianas/microbiología , Enfermedades Transmisibles Emergentes/microbiología , Enfermedades de los Peces/patología , Peces , Agua Dulce , Branquias/microbiología , Branquias/patología , Microbiología del Agua
12.
Emerg Microbes Infect ; 7(1): 88, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29765033

RESUMEN

Chlamydia psittaci is an avian pathogen capable of spill-over infections to humans. A parrot C. psittaci strain was recently detected in an equine reproductive loss case associated with a subsequent cluster of human C. psittaci infections. In this study, we screened for C. psittaci in cases of equine reproductive loss reported in regional New South Wales, Australia during the 2016 foaling season. C. psittaci specific-PCR screening of foetal and placental tissue samples from cases of equine abortion (n = 161) and foals with compromised health status (n = 38) revealed C. psittaci positivity of 21.1% and 23.7%, respectively. There was a statistically significant geographical clustering of cases ~170 km inland from the mid-coast of NSW (P < 0.001). Genomic analysis and molecular typing of C. psittaci positive samples from this study and the previous Australian equine index case revealed that the equine strains from different studs in regional NSW were clonal, while the phylogenetic analysis revealed that the C. psittaci strains from both Australian equine disease clusters belong to the parrot-associated 6BC clade, again indicative of spill-over of C. psittaci infections from native Australian parrots. The results of this work suggest that C. psittaci may be a more significant agent of equine reproductive loss than thought. A range of studies are now required to evaluate (a) the exact role that C. psittaci plays in equine reproductive loss; (b) the range of potential avian reservoirs and factors influencing infection spill-over; and


Asunto(s)
Feto Abortado/microbiología , Chlamydophila psittaci/aislamiento & purificación , Enfermedades de los Caballos/microbiología , Placenta/microbiología , Complicaciones Infecciosas del Embarazo/veterinaria , Psitacosis/veterinaria , Animales , Australia , Chlamydophila psittaci/clasificación , Chlamydophila psittaci/genética , ADN Bacteriano/genética , Femenino , Genoma Bacteriano/genética , Caballos , Tipificación Molecular , Loros , Embarazo , Complicaciones Infecciosas del Embarazo/microbiología , Psitacosis/microbiología
13.
Microb Genom ; 4(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29310749

RESUMEN

The expanding field of bacterial genomics has revolutionized our understanding of microbial diversity, biology and phylogeny. For most species, DNA extracted from culture material is used as the template for genome sequencing; however, the majority of microbes are actually uncultivable, and others, such as obligate intracellular bacteria, require laborious tissue culture to yield sufficient genomic material for sequencing. Chlamydiae are one such group of obligate intracellular microbes whose characterization has been hampered by this requirement. To circumvent these challenges, researchers have developed culture-independent sample preparation methods that can be applied to the sample directly or to genomic material extracted from the sample. These methods, which encompass both targeted [immunomagnetic separation-multiple displacement amplification (IMS-MDA) and sequence capture] and non-targeted approaches (host methylated DNA depletion-microbial DNA enrichment and cell-sorting-MDA), have been applied to a range of clinical and environmental samples to generate whole genomes of novel chlamydial species and strains. This review aims to provide an overview of the application, advantages and limitations of these targeted and non-targeted approaches in the chlamydial context. The methods discussed also have broad application to other obligate intracellular bacteria or clinical and environmental samples.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Chlamydia/genética , Genoma Bacteriano , Técnicas Bacteriológicas/métodos , Secuencia de Bases , Biodiversidad , Chlamydia/clasificación , Chlamydia/crecimiento & desarrollo , ADN Bacteriano/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica
14.
Sci Rep ; 7(1): 10661, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878306

RESUMEN

Advances in culture-independent methods have meant that we can more readily detect and diagnose emerging infectious disease threats in humans and animals. Metagenomics is fast becoming a popular tool for detection and characterisation of novel bacterial pathogens in their environment, and is particularly useful for obligate intracellular bacteria such as Chlamydiae that require labour-intensive culturing. We have used this tool to investigate the microbial metagenomes of Chlamydia-positive cloaca and choana samples from snakes. The microbial complexity within these anatomical sites meant that despite previous detection of chlamydial 16S rRNA sequences by single-gene broad-range PCR, only a chlamydial plasmid could be detected in all samples, and a chlamydial chromosome in one sample. Comparative genomic analysis of the latter revealed it represented a novel taxon, Ca. Chlamydia corallus, with genetic differences in regards to purine and pyrimidine metabolism. Utilising statistical methods to relate plasmid phylogeny to the phylogeny of chromosomal sequences showed that the samples also contain additional novel strains of Ca. C. corallus and two putative novel species in the genus Chlamydia. This study highlights the value of metagenomics methods for rapid novel bacterial discovery and the insights it can provide into the biology of uncultivable intracellular bacteria such as Chlamydiae.


Asunto(s)
Chlamydia/clasificación , Chlamydia/genética , Metagenoma , Metagenómica , Animales , Orden Génico , Variación Genética , Genoma Bacteriano , Filogenia , Plásmidos/genética , Serpientes/microbiología
15.
Environ Microbiol ; 19(5): 1899-1913, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28205377

RESUMEN

Several Chlamydiales families are associated with epitheliocystis, a common condition of the fish gill epithelium. These families share common ancestors with the Chlamydiaceae and environmental Chlamydiae. Due to the lack of culture systems, little is known about the biology of these chlamydial fish pathogens. We investigated epitheliocystis in cultured Orange-spotted grouper (Epinephelus coioides) from North Queensland, Australia. Basophilic inclusions were present in the gills of 22/31 fish and the presence of the chlamydial pathogen in the cysts was confirmed by in situ hybridization. Giant grouper (Epinephelus lanceolatus) cultured in the same systems were epitheliocystis free. 16S rRNA gene sequencing revealed a novel member of the Candidatus Parilichlamydiaceae: Ca. Similichlamydia epinephelii. Using metagenomic approaches, we obtained an estimated 68% of the chlamydial genome, revealing that this novel chlamydial pathogen shares a number of key pathogenic hallmarks with the Chlamydiaceae, including an intact Type III Secretion system and several chlamydial virulence factors. This provides additional evidence that these pathogenic mechanisms were acquired early in the evolution of this unique bacterial phylum. The identification and genomic characterization of Ca. S. epinephelii provides new opportunities to study the biology of distantly-related chlamydial pathogens while shining a new light on the evolution of pathogenicity of the Chlamydiaceae.


Asunto(s)
Lubina/microbiología , Infecciones por Chlamydia/microbiología , Chlamydia/clasificación , Chlamydia/genética , Enfermedades de los Peces/microbiología , Branquias/microbiología , Animales , Australia , Composición de Base/genética , Chlamydia/patogenicidad , Infecciones por Chlamydia/patología , ADN Bacteriano/genética , Genoma Bacteriano/genética , Genómica , ARN Ribosómico 16S/genética , Sistemas de Secreción Tipo III/genética , Factores de Virulencia/genética
16.
BMC Genomics ; 17: 710, 2016 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-27595750

RESUMEN

BACKGROUND: Recent molecular studies have revealed considerably more diversity in the phylum Chlamydiae than was previously thought. Evidence is growing that many of these novel chlamydiae may be important pathogens in humans and animals. A significant barrier to characterising these novel chlamydiae is the requirement for culturing. We recently identified a range of novel uncultured chlamydiae in captive snakes in Switzerland, however, nothing is known about their biology. Using a metagenomics approach, the aim of this study was to characterise the genome of a novel chlamydial taxon from the choana of a captive snake. In doing so, we propose a new candidate species in the genus Chlamydia (Candidatus Chlamydia sanzinia) and reveal new information about the biological diversity of this important group of pathogens. RESULTS: We identified two chlamydial genomic contigs: a 1,113,073 bp contig, and a 7,504 bp contig, representing the chromosome and plasmid of Ca. Chlamydia sanzinia strain 2742-308, respectively. The 998 predicted coding regions include an expanded repertoire of outer membrane proteins (Pmps and Omps), some of which exhibited frameshift mutations, as well as several chlamydial virulence factors such as the translocating actin-recruitment phosphoprotein (Tarp) and macrophage inhibition potentiator (Mip). A suite of putative inclusion membrane proteins were also predicted. Notably, no evidence of a traditional chlamydial plasticity zone was identified. Phylogenetically, Ca. Chlamydia sanzinia forms a clade with C. pneumoniae and C. pecorum, distinct from former "Chlamydophila" species. CONCLUSIONS: Genomic characterisation of a novel uncultured chlamydiae from the first reptilian host has expanded our understanding of the diversity and biology of a genus that was thought to be the most well-characterised in this unique phylum. It is anticipated that this method will be suitable for characterisation of other novel chlamydiae.


Asunto(s)
Chlamydia/clasificación , Metagenómica/métodos , Análisis de Secuencia de ADN/métodos , Serpientes/microbiología , Animales , Chlamydia/genética , Chlamydia/crecimiento & desarrollo , Mapeo Cromosómico , Tamaño del Genoma , Genoma Bacteriano , Sistemas de Lectura Abierta , Filogenia
17.
Vet Microbiol ; 178(1-2): 88-93, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-25944652

RESUMEN

Chlamydiosis has been described in both free-ranging and captive reptiles. The infection usually manifests as granulomatous inflammation in inner organs such as spleen, heart, lung and liver but might also occur in asymptomatic reptiles. The aim of this study was to investigate and characterise Chlamydia pneumoniae and potential other novel chlamydial infections in the choana and cloaca samples of 137 clinically healthy captive snakes from six private collections. Forty eight samples from 29 animals were found to be positive by a Chlamydiaceae family-specific qPCR. By Chlamydia species-specific ArrayTube Microarray, 43 samples were positive, with 36 of these being identified as C. pneumoniae. The prevalence of Chlamydia ranged from 5 to 33%. PCR and sequencing of the Chlamydiales 16S rRNA signature sequence of 21 Chlamydia positive samples revealed the presence of seven novel 16S rRNA genotypes. BLAST-n and phylogenetic analysis of the near-full length 16S rRNA gene sequence of each of these novel 16S rRNA sequences revealed that five genotypes share closest sequence identity to 16S rRNA sequences from C. pneumoniae (98.6-99.2%), suggesting that these sequences are novel C. pneumoniae strains. One genotype is 96.9% similar to C. pneumoniae strains suggesting it may originate from a yet undescribed chlamydial species within the genus Chlamydia. This study further highlights the broad host range for C. pneumoniae and suggests that reptiles may still contain a significant and largely uncharacterised level of chlamydial genetic diversity that requires further investigation.


Asunto(s)
Animales de Zoológico , Infecciones por Chlamydia/genética , Chlamydophila pneumoniae/genética , Filogenia , Serpientes/microbiología , Animales , Cloaca/microbiología , Biología Computacional , Genotipo , Análisis por Micromatrices/veterinaria , Cavidad Nasal/microbiología , Reacción en Cadena de la Polimerasa/veterinaria , ARN Ribosómico 16S/genética , Especificidad de la Especie
18.
Pathog Dis ; 73(1): 1-15, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25854000

RESUMEN

Chlamydiae are obligate intracellular bacteria that share a unique but remarkably conserved biphasic developmental cycle that relies on a eukaryotic host cell for survival. Although the phylum was originally thought to only contain one family, the Chlamydiaceae, a total of nine families are now recognized. These so-called Chlamydia-like organisms (CLOs) are also referred to as 'environmental chlamydiae', as many were initially isolated from environmental sources. However, these organisms are also emerging pathogens, as many, such as Parachlamydia sp., Simkania sp. and Waddlia sp., have been associated with human disease, and others, such as Piscichlamydia sp. and Parilichlamydia sp., have been documented in association with diseases in animals. Their strict intracellular nature and the requirement for cell culture have been a confounding factor in characterizing the biology and pathogenicity of CLOs. Nevertheless, the genomes of seven CLO species have now been sequenced, providing new information on their potential ability to adapt to a wide range of hosts. As new isolation and diagnostic methods advance, we are able to further explore the richness of this phylum with further research likely to help define the true pathogenic potential of the CLOs while also providing insight into the origins of the 'traditional' chlamydiae.


Asunto(s)
Chlamydiales/fisiología , Chlamydiales/patogenicidad , Microbiología Ambiental , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Animales , Investigación Biomédica/historia , Investigación Biomédica/tendencias , Chlamydiales/clasificación , Historia del Siglo XX , Historia del Siglo XXI , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...