Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477976

RESUMEN

MOTIVATION: Post-genome-wide association studies (pGWAS) analysis is designed to decipher the functional consequences of significant single-nucleotide polymorphisms (SNPs) in the era of GWAS. This can be translated into research insights and clinical benefits such as the effectiveness of strategies for disease screening, treatment and prevention. However, the setup of pGWAS (pGWAS) tools can be quite complicated, and it mostly requires big data. The challenge however is, scientists are required to have sufficient experience with several of these technically complex and complicated tools in order to complete the pGWAS analysis. RESULTS: We present SysBiolPGWAS, a pGWAS web application that provides a comprehensive functionality for biologists and non-bioinformaticians to conduct several pGWAS analyses to overcome the above challenges. It provides unique functionalities for analysis involving multi-omics datasets and visualization using various bioinformatics tools. SysBiolPGWAS provides access to individual pGWAS tools and a novel custom pGWAS pipeline that integrates several individual pGWAS tools and data. The SysBiolPGWAS app was developed to be a one-stop shop for pGWAS analysis. It targets researchers in the area of the human genome and performs its analysis mainly in the autosomal chromosomes. AVAILABILITY AND IMPLEMENTATION: SysBiolPGWAS web app was developed using JavaScript/TypeScript web frameworks and is available at: https://spgwas.waslitbre.org/. All codes are available in this GitHub repository https://github.com/covenant-university-bioinformatics.


Asunto(s)
Biología Computacional , Estudio de Asociación del Genoma Completo , Humanos , Programas Informáticos , Multiómica , Polimorfismo de Nucleótido Simple
2.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34415019

RESUMEN

Over the past few years, meta-analysis has become popular among biomedical researchers for detecting biomarkers across multiple cohort studies with increased predictive power. Combining datasets from different sources increases sample size, thus overcoming the issue related to limited sample size from each individual study and boosting the predictive power. This leads to an increased likelihood of more accurately predicting differentially expressed genes/proteins or significant biomarkers underlying the biological condition of interest. Currently, several meta-analysis methods and tools exist, each having its own strengths and limitations. In this paper, we survey existing meta-analysis methods, and assess the performance of different methods based on results from different datasets as well as assessment from prior knowledge of each method. This provides a reference summary of meta-analysis models and tools, which helps to guide end-users on the choice of appropriate models or tools for given types of datasets and enables developers to consider current advances when planning the development of new meta-analysis models and more practical integrative tools.


Asunto(s)
Algoritmos , Análisis de Datos , Metaanálisis como Asunto , Programas Informáticos , Árboles de Decisión , Humanos , Flujo de Trabajo
3.
Brief Funct Genomics ; 19(1): 49-59, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31867604

RESUMEN

In silico DNA sequence generation is a powerful technology to evaluate and validate bioinformatics tools, and accordingly more than 35 DNA sequence simulation tools have been developed. With such a diverse array of tools to choose from, an important question is: Which tool should be used for a desired outcome? This question is largely unanswered as documentation for many of these DNA simulation tools is sparse. To address this, we performed a review of DNA sequence simulation tools developed to date and evaluated 20 state-of-art DNA sequence simulation tools on their ability to produce accurate reads based on their implemented sequence error model. We provide a succinct description of each tool and suggest which tool is most appropriate for the given different scenarios. Given the multitude of similar yet non-identical tools, researchers can use this review as a guide to inform their choice of DNA sequence simulation tool. This paves the way towards assessing existing tools in a unified framework, as well as enabling different simulation scenario analysis within the same framework.


Asunto(s)
Simulación por Computador , ADN/análisis , ADN/genética , Genoma Humano , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...