Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inherit Metab Dis ; 46(6): 1089-1103, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37494004

RESUMEN

Maple syrup urine disease (MSUD) is an inborn error of branched-chain amino acid metabolism affecting several thousand individuals worldwide. MSUD patients have elevated levels of plasma leucine and its metabolic product α-ketoisocaproate (KIC), which can lead to severe neurotoxicity, coma, and death. Patients must maintain a strict diet of protein restriction and medical formula, and periods of noncompliance or illness can lead to acute metabolic decompensation or cumulative neurological impairment. Given the lack of therapeutic options for MSUD patients, we sought to develop an oral enzyme therapy that can degrade leucine within the gastrointestinal tract prior to its systemic absorption and thus enable patients to maintain acceptable plasma leucine levels while broadening their access to natural protein. We identified a highly active leucine decarboxylase enzyme from Planctomycetaceae bacterium and used directed evolution to engineer the enzyme for stability to gastric and intestinal conditions. Following high-throughput screening of over 12 000 enzyme variants over 9 iterative rounds of evolution, we identified a lead variant, LDCv10, which retains activity following simulated gastric or intestinal conditions in vitro. In intermediate MSUD mice or healthy nonhuman primates given a whey protein meal, oral treatment with LDCv10 suppressed the spike in plasma leucine and KIC and reduced the leucine area under the curve in a dose-dependent manner. Reduction in plasma leucine correlated with decreased brain leucine levels following oral LDCv10 treatment. Collectively, these data support further development of LDCv10 as a potential new therapy for MSUD patients.


Asunto(s)
Enfermedad de la Orina de Jarabe de Arce , Humanos , Ratones , Animales , Leucina , Aminoácidos de Cadena Ramificada , Proteínas , Terapia Enzimática , Primates/metabolismo
2.
Mol Genet Metab ; 139(4): 107653, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37463544

RESUMEN

Classical homocystinuria (HCU) is a rare inborn error of amino acid metabolism characterized by accumulation of homocysteine, an intermediate product of methionine metabolism, leading to significant systemic toxicities, particularly within the vascular, skeletal, and ocular systems. Most patients require lifelong dietary therapy with severe restriction of natural protein to minimize methionine intake, and many patients still struggle to maintain healthy homocysteine levels. Since eliminating methionine from the diet reduces homocysteine levels, we hypothesized that an enzyme that can degrade methionine within the gastrointestinal (GI) tract could help HCU patients maintain healthy levels while easing natural protein restrictions. We describe the preclinical development of CDX-6512, a methionine gamma lyase (MGL) enzyme that was engineered for stability and activity within the GI tract for oral administration to locally degrade methionine. CDX-6512 is stable to low pH and intestinal proteases, enabling it to survive the harsh GI environment without enteric coating and to degrade methionine freed from dietary protein within the small intestine. Administering CDX-6512 to healthy non-human primates following a high protein meal led to a dose-dependent suppression of plasma methionine. In Tg-I278T Cbs-/- mice, an animal model that recapitulates aspects of HCU disease including highly elevated serum homocysteine levels, oral dosing of CDX-6512 after a high protein meal led to suppression in serum levels of both methionine and homocysteine. When animals received a daily dose of CDX-6512 with a high protein meal for two weeks, the Tg-I278T Cbs-/- mice maintained baseline homocysteine levels, whereas homocysteine levels in untreated animals increased by 39%. These preclinical data demonstrate the potential of CDX-6512 as an oral enzyme therapy for HCU.


Asunto(s)
Homocistinuria , Humanos , Ratones , Animales , Homocistinuria/tratamiento farmacológico , Homocistinuria/genética , Metionina/metabolismo , Homocisteína , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Racemetionina , Tracto Gastrointestinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...