Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Health Policy ; 140: 104967, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142570

RESUMEN

The UK imports many doctors from abroad, where medical training and experience may differ. This study aims to understand how drug prescription behaviour varies in English GP practices with higher shares of foreign-trained GPs. Results indicate that in general prac- tices with a high proportion of GPs trained outside the UK, there are higher prescriptions for antibiotics, mental health medication, analgesics, antacids, and statins, while controlling for patient and practice characteristics. However, we found no significant impact on pa- tient satisfaction or unplanned hospitalisations, suggesting that this behaviour may be due to over-prescribing. Identifying differences in prescribing habits amongst GPs is crucial in deter- mining best policies for ensuring consistent services across GP practices and reducing health inequalities.


Asunto(s)
Médicos Generales , Humanos , Médicos Generales/psicología , Inglaterra , Prescripciones de Medicamentos , Pautas de la Práctica en Medicina
2.
Labour Econ ; : 102402, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37361356

RESUMEN

We investigate the attachment to the labour market of women in their 30s, who are combining career and family choices, through their reactions to an exogenous, and potentially symmetric shock, such as the COVID-19 pandemic. We find that in Italy a large number of women with small children, living in the North, left permanent (and temporary) employment and became inactive in 2020. Despite the short period of observation after the burst of the pandemic, the identified impacts appear large and persistent, particularly with respect to the men of the same age. We argue that this evidence is ascribable to specific regional socio-cultural factors, which foreshadow a potential long-term detrimental impact on female labour force participation.

3.
ACS Appl Mater Interfaces ; 13(45): 53986-53995, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34751024

RESUMEN

Metal-organic frameworks (MOFs) are excellent platforms to design hybrid electrolytes for Li batteries with liquid-like transport and stability against lithium dendrites. We report on Li+ dynamics in quasi-solid electrolytes consisting in Mg-MOF-74 soaked with LiClO4-propylene carbonate (PC) and LiClO4-ethylene carbonate (EC)/dimethyl carbonate (DMC) solutions by combining studies of ion conductivity, nuclear magnetic resonance (NMR) characterization, and spin relaxometry. We investigate nanoconfinement of liquid inside MOFs to characterize the adsorption/solvation mechanism at the basis of Li+ migration in these materials. NMR supports that the liquid is nanoconfined in framework micropores, strongly interacting with their walls and that the nature of the solvent affects Li+ migration in MOFs. Contrary to the "free'' liquid electrolytes, faster ion dynamics and higher Li+ mobility take place in LiClO4-PC electrolytes when nanoconfined in MOFs demonstrating superionic conductor behavior (conductivity σrt > 0.1 mS cm-1, transport number tLi+ > 0.7). Such properties, including a more stable Li electrodeposition, make MOF-hybrid electrolytes promising for high-power and safer lithium-ion batteries.

4.
Phys Chem Chem Phys ; 21(30): 16647-16657, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31317145

RESUMEN

The modification of metal oxide surfaces with organic moieties has been widely studied as a method of preparing organic-inorganic hybrid materials for various applications. Among the inorganic oxides, ion-exchangeable layered perovskites are particularly interesting, because of their appealing electronic and reactive properties. In particular, their protonated interlayer surface can be easily functionalized with organic groups allowing the production of stable hybrid materials. As a further step in the design of new inorganic-organic hybrid proton conductors, a combined experimental and theoretical study of two intercalated compounds (propanol and imidazole) in HLaNb2O7 is presented here. A generally very good agreement with the available experimental data is found in reproducing both structural features and 13C-NMR chemical shifts, and marked differences between the two considered intercalated compounds are evidenced, with possible important outcomes for proton conduction. Notably, the free imidazole molecules are easily protonated by the acidic protons present in the interlayer spacing, thus inhibiting an efficient charge transport mechanism. In order to overcome this problem, a model system has been considered, where the imidazoles are bound to the end of a butyl chain, the whole being intercalated between two perovskite layers. The obtained theoretical data suggest that, in such a system, proton transfer between two adjacent imidazoles is a barrierless process. These results could then open new perspectives for such hybrid proton conductors.

5.
Phys Chem Chem Phys ; 21(11): 6142-6149, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30820495

RESUMEN

Hybrid polymer-ceramic electrolytes with high ceramic loading are currently investigated as a promising solution to achieve high safety and optimal mechanical properties in all-solid-state rechargeable batteries. In this study composite poly(ethylene oxide)/Li1.3Al0.3Ti1.7(PO4)3 (PEO/LATP) electrolytes, with and without lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the Li+ salt, were investigated through a combination of physicochemical and electrochemical techniques, including X-ray diffraction, scanning electron microscopy, thermal analysis, solid-state MAS-NMR and impedance spectroscopy. We were able to shed light on the interactions between the ceramic and the polymer phases, and on the mechanisms for Li+ transport. Membranes containing 70 wt% of LATP and 30 wt% of P(EO)15LiTFSI exhibit conductivity values of 4 × 10-5 Ω-1 cm-1 at 25 °C and in excess of 10-4 Ω-1 cm-1 at 45 °C. These promising results, obtained on a quasi-ceramic electrolyte through room temperature processing, suggest that further improvements in the transport properties of "polymer-in-ceramic" systems may be sought by increasing the amorphous polymer content, and by carefully investigating the role of the ceramic particles' composition, dimensions and dispersion on the transport properties of the hybrid system.

6.
Inorg Chem ; 57(11): 6746-6752, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29792421

RESUMEN

The evolution of the hybrid structure between 9R hexagonal perovskite and palmierite in the entire Ba3Mo(1- x)W xNbO8.5 solid solution (where x = 0, 0.25, 0.5, 0.75, and 1) was probed in the 100-900 K range by synchrotron high-resolution powder diffraction. Each sample exhibits a chemical-dependent structural model in the low-temperature regime (from 100 to 500 K) in which 9R and palmierite structures compete each other, the former being progressively favored as tungsten replaces molybdenum. Above 500 K, unit cell parameters and metal site occupancies start to converge toward a similar structural arrangement that is completely reached at 900 K. In fact, at this temperature, the entire solid solution discloses comparable unit cell and an almost enterely occupied M1 site, with a structure that is much closer to palmierite rather than 9R polytype. The present crystallographic results well explain the behavior of the material's bulk ionic conductivity, whose temperature evolution for different compositions depends from the contribution of tetrahedral units proper of the palmierite structure.

7.
ACS Appl Mater Interfaces ; 9(40): 34891-34899, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28914523

RESUMEN

The implementation of aqueous electrode processing of cathode materials is a key for the development of greener Na-ion batteries. Herein, the development and optimization of the aqueous electrode processing for the ecofriendly Na0.44MnO2 (NMO) cathode material, employing carboxymethyl cellulose (CMC) as binder, are reported for the first time. The characterization of such an electrode reveals that the performances are strongly affected by the employed electrolyte solution, especially, the sodium salt and the use of electrolyte's additives. In particular, the best results are obtained using the 1 M solution of NaPF6 in EC/DEC (ethylene carbonate/diethyl carbonate) 3:7 (v/v) + 2 wt % FEC (fluoroethylene carbonate). With this electrolyte, the outstanding capacity of 99.7 mA h g-1 is delivered by the CMC-NMO cathode after 800 cycles at a 1C charge/discharge rate. On the basis of this excellent long-term performance, a full sodium cell, composed of a CMC-based NMO cathode and hard carbon from biowaste (corn cob), has been assembled and tested. The cell delivers excellent performances in terms of specific capacity, capacity retention, and long-term cycling stability. After 75 cycles at a C/5 rate, the capacity of the NMO in the full-cell approaches 109 mA h g-1 with a Coulombic efficiency of 99.9%.

8.
Inorg Chem ; 56(1): 645-653, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-28001385

RESUMEN

We describe the functionalization of the layered perovskite HLaNb2O7 with n-propanol, n-decanol, 3-mercaptopropyl-trimethoxysilane, imidazole, n-decylamine, and histamine. The use of sonication is found to significantly improve the reaction yield and to reduce the reaction time, compared to conventional thermal treatment under reflux. The obtained intercalates are thoroughly characterized through the use of several complementary experimental techniques (scanning electron microscopy, IR spectroscopy, X-ray diffraction, thermogravimetric analysis, magic-angle spinning NMR), clarifying their structure and chemical bonding. The implications for the design of inorganic-organic composite materials are discussed.

9.
Phys Chem Chem Phys ; 18(42): 29330-29336, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27734041

RESUMEN

Lattice strain is considered a promising approach to modulate the structural and functional properties of oxide materials. In this study we investigate the effect of lattice strain on doping, hydration and proton transport for the family of scheelite-type proton conductors using both atomistic and DFT computational methods. The results suggest that tensile strain improves the dopant solubility and proton uptake of the material. The anisotropic proton pathways change from being within the a-b plane to being in the a-c plane. However, the predicted reduction in the migration barrier suggests that improvements in ionic conductivity due to lattice strain effects will be limited, in contrast with the work on oxide ion conduction. Such results are rationalized in terms of structural changes and differences in migration steps between oxide ions and protonic species.

10.
Phys Chem Chem Phys ; 18(31): 21903-12, 2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27440133

RESUMEN

Dion-Jacobson phases, like MLaNb2O7, are an interesting class of ion-exchangeable layered perovskites possessing electronic and photocatalytic properties. Their protonated and organo-modified homologues, in particular, have already been indicated as promising catalysts. However, the structural analysis of these highly tailorable materials is still incomplete, and both the intercalation process and thermal stability of the included organic moieties are far from being completely understood. In this study, we present a thorough solid-state NMR characterization of HLaNb2O7·xH2O intercalated with different amounts of octylamine, or with decylamine. Samples were analyzed as prepared, and after thermal treatment at different temperatures up to 220 °C. The substitution of pristine proton ions was followed via(1)H MAS NMR spectroscopy, whereas the alkyl chains were monitored through (13)C((1)H) CP MAS experiments. The interactions in the interlayer space were explored using (13)C((1)H) 2D heteronuclear correlation experiments. We demonstrate that some of the protons are involved in the functionalization reaction, and some of them are in close proximity to the alkyl ammonium chains. Heating of the hybrid materials leads first to a rearrangement of the alkyl chains and then to their degradation. The spatial arrangement of the chains, their interactions and the thermal behavior of the materials depend on the extent of the functionalization, and on the nature of the intercalated alkyl ammonium ions.

11.
Materials (Basel) ; 9(4)2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-28773404

RESUMEN

Evolution of pure hydrogen and oxygen by photocatalytic water splitting was attained from the opposite sides of a composite Pt/Ti/TiO2 photoelectrode. The TiO2 films were prepared by radio frequency (RF)-Magnetron Sputtering at different deposition time ranging from 1 up to 8 h and then characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet-visible-near infrared (UV-vis-NIR) diffuse reflectance spectroscopy. The photocatalytic activity was evaluated by incident photon to current efficiency (IPCE) measurements and by photocatalytic water splitting measurements in a two-compartment cell. The highest H2 production rate was attained with the photoelectrode prepared by 6 h-long TiO2 deposition thanks to its high content in the rutile polymorph, which is active under visible light. By contrast, the photoactivity dropped for longer deposition time, because of the increased probability of electron-hole recombination due to the longer electron transfer path.

12.
Nanoscale ; 7(6): 2221-4, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25564412

RESUMEN

In this paper we report on the deposition of La0.99Ca0.01NbO4 thin films with scheelite-type crystal structure. Thanks to the film's nanostructure, we were able to stabilize the tetragonal scheelite-type structure phase at room temperature, which involves a full removal of the fergusonite-scheelite phase transition.

13.
Dalton Trans ; 41(1): 50-3, 2012 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-22105971

RESUMEN

In this paper we presented the X-ray PDF investigation of orthorhombic Ba(2)In(2)O(5) and cubic Ba(2)In(1.7)P(0.3)O(5.3) and Ba(2)In(1.7)S(0.3)O(5.45) samples. Pure Ba(2)In(2)O(5) was found to be properly described-at the local scale-by the orthorhombic average structure. Ba(2)In(1.7)P(0.3)O(5.3) and Ba(2)In(1.7)S(0.3)O(5.45) cannot be described, at the local scale, by a cubic symmetry. The PDFs of these two samples clearly showed a distorted atom arrangement in the short-range which can be described again with the orthorhombic symmetry found in pure barium indate.

15.
J Am Chem Soc ; 129(21): 6903-7, 2007 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-17488014

RESUMEN

La2Mo2O9 (LAMOX) is a fast oxygen ion conductor which shows high oxygen ion conductivities comparable to those of yttria-sabilized zirconia (YSZ). LAMOX is subject to a structural phase transition from the nonconductive monoclinic form to the highly conductive cubic form at about 580 degrees C. The origin of the conductivity in cubic LAMOX has been suggested to be due to a "disorder" in the O sublattice without any insight into the real distribution of the oxygen ion. In this paper, thanks to the application of the neutron atomic pair distribution function (PDF) analysis, we provide evidence that the local structure of the cubic polymorph of LAMOX is exactly the same of that of the monoclinic phase, thus indicating that the structural phase transition is actually a transition from a static to a dynamic distribution of the oxygen defects. This work represents the first application of the atomic-pair distribution function analysis to the study of an oxygen fast-oxide ion conductor and clearly indicates that a more reliable and detailed description of their local structure, particularly in the highly conductive phases, can lead to a better comprehension of the structure-property correlation, which is the starting point for the design of new and optimized functional materials.

16.
J Phys Chem B ; 110(35): 17414-9, 2006 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16942078

RESUMEN

This paper presents the results of a high-resolution neutron diffraction and magnetometry investigation on the optimally doped (x = 0.3) La(1.4)Sr(0.8)Ca(0.8)Mn(2)O(7) bilayered manganite. In particular, two samples with different oxygen contents have been studied to put in prominence the role of the Mn average valence states at fixed cation concentration. The results show, for the first time, the absence of long-range magnetic order in this optimally doped manganite when the A-site of the structure is doped with equal proportions of isovalent Ca and Sr. This holds for both samples, which present different lattice effects with T, thus suggesting the primary role of cation disorder as the source of the lack of long-range order. The presence, for both samples, of defined insulating- to metallic-like transitions suggests that the transport properties are not linked to the evolution of long-range order and that two-dimensional spin ordering in the layers of the perovskite blocks may be sufficient to "assist" the hole hopping. A possible reason for the suppression of magnetic order induced by the Ca doping is a size effect coupled to the cation size mismatch between the Sr and Ca ions.

17.
J Phys Chem B ; 110(35): 17430-6, 2006 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16942081

RESUMEN

In this paper we report the results of the synthesis and structural, transport, and magnetic characterization of pure La(0.5)Sr(1.5)MnO(4) and B-site lightly doped samples, i.e. La(0.5)Sr(1.5)Mn(0.95)B(0.05)O(4), where B = Ru, Co, and Ni. The choice was made in order to probe the charge ordering/orbital ordering ground state of the monolayered La(0.5)Sr(1.5)MnO(4) manganite as a consequence of the cation doping. It is shown that even a light doping is successful in suppressing the charge and orbital order found in pure La(0.5)Sr(1.5)MnO(4). No long-range magnetic order has been detected in any of the doped samples but the setup of a spin-glass state with a common freezing temperature ( approximately 22 K). Structural parameters show an anisotropy in the lattice constant variation, with the tetragonal distortion increasing as the cell volume reduces, which may suggest a variation in the orbital character of the e(g) electrons along with the overall cation size.

18.
J Phys Chem B ; 110(11): 5395-402, 2006 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-16539474

RESUMEN

Atomistic simulation techniques are used to examine the defect chemistry of perovskite-structured NdCoO(3), a material whose electrochemical properties make it attractive for use in heterogeneous oxidation catalysis, as well as in gas sensors and mixed ionic/electronic conductors. In practice, dopants are added to NdCoO(3) to obtain the desired properties, such as high electrical conductivity and rapid gas adsorption/desorption; thus, a wide range of dopants substituted on both Nd and Co sites are examined. Charge compensation for aliovalent dopants is predicted to occur via formation of oxide ion vacancies; these are understood to be key sites with respect to catalytic and sensor activity. Low activation energies calculated for oxide ion migration are consistent with high oxygen mobilities measured experimentally. Sr and Ca, which occupy Nd sites in the lattice, are found to be the most soluble of the alkaline earth metals, in agreement with experiment. These two dopant ions also have the weakest binding energies for dopant-vacancy cluster formation. Mechanisms of electronic defect formation, critical to the overall transport properties of the material, are also considered. The results suggest that disproportionation of the Co ion to form small polaron species is the most favorable intrinsic defect process. In doped compounds, formation of electronic holes via uptake of oxygen at vacant sites is found to be a low energy process.

19.
J Phys Chem B ; 109(44): 20707-13, 2005 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-16853683

RESUMEN

In this work, we report a structural, electrical, and magnetic characterization of the La(1-x)Na(x)Mn(1-y)Ru(y)O(3+delta) (LNMRO) system with x = 0.05 and 0.15 and y = 0, 0.05, and 0.15, also comprising an investigation of the role of the oxygen content on the related redox properties. The experimental investigation has been realized with the aid of X-ray powder diffraction, electron microprobe analysis, thermogravimetry, electrical resistivity and magnetization measurements, and electron paramagnetic resonance. We demonstrate that the effect of ruthenium doping on the studied LNMRO compounds is not only directly related to the Ru/Mn substitution and to the Ru oxidation state but also indirectly connected to the oxygen content in the sample. Our data show that ruthenium addition can "improve" electrical and magnetic properties of nonoptimally (low) cation-doped manganites, causing an increase of the T(C) value and the insurgence of magnetoresistance effect, as observed for the x = 0.05 and y = 0.05 sample (MR congruent with 60% at 7 T and at approximately 260 K).

20.
Chem Commun (Camb) ; (12): 1408-9, 2004 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-15179488

RESUMEN

In this communication we report the unexpected effect of ruthenium doping in sodium lightly doped manganites. This effect seems to be in contrast with the usual model applied to describe the effect of this magnetic ion into the manganite structure. We propose a possible compensation mechanism which seems also able to describe other peculiar features encountered in these materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...