Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39205313

RESUMEN

Feline morbillivirus (FeMV) has been associated with feline health, although its exact role in pathogenesis is still debated. In this study, an indirect enzyme-linked immunosorbent assay (i-ELISA) targeting a recombinant matrix protein of FeMV (rFeMV-M) was developed and assessed in comparison to a Western blotting (WB) assay. The i-ELISA was evaluated using blood samples from 136 cats that were additionally tested with real-time reverse-transcription PCR (RT-qPCR). The i-ELISA exhibited a sensitivity of 90.1%, specificity of 75.6%, positive predictive value of 88.2%, and negative predictive value of 79.1%. The agreement between i-ELISA and WB analyses was substantial (a κ coefficient of 0.664 with a 95% confidence interval of 0.529 to 0.799). Within the study group, 68.4% (93/136) of the cats were serologically positive in the i-ELISA and 66.9% (91/136) in the WB assay, with 11.8% (11/93) of false positivity with the i-ELISA. However, only 8.1% (11/136) of the cats tested positive for FeMV using RT-qPCR (p < 0.001). The developed i-ELISA proved effective in identifying FeMV-infected cats and indicated the prevalence of FeMV exposure. Combining FeMV antibody detection through i-ELISA with FeMV RT-qPCR could offer a comprehensive method to determine and monitor FeMV infection status. Nevertheless, this assay still requires refinement due to a significant number of false positive results, which can lead to the misdiagnosis of cats without antibodies as having antibodies. This study also provided the first evidence of seroprevalence against FeMV among cat populations in Thailand, contributing valuable insights into the geographic distribution and prevalence of this virus.


Asunto(s)
Anticuerpos Antivirales , Enfermedades de los Gatos , Ensayo de Inmunoadsorción Enzimática , Infecciones por Morbillivirus , Morbillivirus , Sensibilidad y Especificidad , Animales , Gatos , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Morbillivirus/inmunología , Enfermedades de los Gatos/virología , Enfermedades de los Gatos/diagnóstico , Enfermedades de los Gatos/inmunología , Infecciones por Morbillivirus/veterinaria , Infecciones por Morbillivirus/diagnóstico , Infecciones por Morbillivirus/inmunología , Infecciones por Morbillivirus/virología , Proteínas Recombinantes/inmunología , Femenino , Western Blotting/veterinaria , Masculino , Proteínas de la Matriz Viral/inmunología , Proteínas de la Matriz Viral/genética
2.
PLoS One ; 19(5): e0303555, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753729

RESUMEN

Cluster regularly interspaced short palindromic repeats and CRISPR associated protein 9 (CRISPR-Cas9) is a promising tool for antimicrobial re-sensitization by inactivating antimicrobial resistance (AMR) genes of bacteria. Here, we programmed CRISPR-Cas9 with common spacers to target predominant blaCTX-M variants in group 1 and group 9 and their promoter in an Escherichia coli model. The CRISPR-Cas9 was delivered by non-replicative phagemid particles from a two-step process, including insertion of spacer in CRISPR and construction of phagemid vector. Spacers targeting blaCTX-M promoters and internal sequences of blaCTX-M group 1 (blaCTX-M-15 and -55) and group 9 (blaCTX-M-14, -27, -65, and -90) were cloned into pCRISPR and phagemid pRC319 for spacer evaluation and phagemid particle production. Re-sensitization and plasmid clearance were mediated by the spacers targeting internal sequences of each group, resulting in 3 log10 to 4 log10 reduction of the ratio of resistant cells, but not by those targeting the promoters. The CRISPR-Cas9 delivered by modified ΦRC319 particles were capable of re-sensitizing E. coli K-12 carrying either blaCTX-M group 1 or group 9 in a dose-dependent manner from 0.1 to 100 multiplicity of infection (MOI). In conclusion, CRISPR-Cas9 system programmed with well-designed spacers targeting multiple variants of AMR gene along with a phage-based delivery system could eliminate the widespread blaCTX-M genes for efficacy restoration of available third-generation cephalosporins by reversal of resistance in bacteria.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Escherichia coli , Escherichia coli/genética , Escherichia coli/virología , Bacteriófagos/genética , beta-Lactamasas/genética , Proteínas de Escherichia coli/genética , Plásmidos/genética , Regiones Promotoras Genéticas , Edición Génica/métodos , Antibacterianos/farmacología
3.
Methods Mol Biol ; 2786: 89-133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38814391

RESUMEN

While mRNA vaccines have shown their worth, they have the same failing as inactivated vaccines, namely they have limited half-life, are non-replicating, and therefore limited to the size of the vaccine payload for the amount of material translated. New advances averting these problems are combining replicon RNA (RepRNA) technology with nanotechnology. RepRNA are large self-replicating RNA molecules (typically 12-15 kb) derived from viral genomes defective in at least one essential structural protein gene. They provide sustained antigen production, effectively increasing vaccine antigen payloads over time, without the risk of producing infectious progeny. The major limitations with RepRNA are RNase-sensitivity and inefficient uptake by dendritic cells (DCs), which need to be overcome for efficacious RNA-based vaccine design. We employed biodegradable delivery vehicles to protect the RepRNA and promote DC delivery. Condensing RepRNA with polyethylenimine (PEI) and encapsulating RepRNA into novel Coatsome-replicon vehicles are two approaches that have proven effective for delivery to DCs and induction of immune responses in vivo.


Asunto(s)
Células Dendríticas , Genoma Viral , Pestivirus , ARN Viral , Replicón , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , ARN Viral/genética , Pestivirus/genética , Pestivirus/inmunología , Replicón/genética , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/administración & dosificación , Ratones , Polietileneimina/química , Vacunas de ARNm , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/genética , Vacunas Sintéticas/administración & dosificación
4.
Vaccine ; 41(49): 7313-7316, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37951794

RESUMEN

Rabies vaccination is mandatory in dogs in Thailand. In this study, shelter management quality and rabies immune status were evaluated by questionnaire and rabies virus neutralising antibody (RVNA) measurement. The questionnaire was designed to assess all relevant factors of shelter management, which could impact the rabies vaccine antibody response. Thirteen participating shelters were classified into 4 groups, namely group A (best), B (good), C (fair), and D (require improvement). Sera were collected from randomly selected dogs (n = 113) within 4 weeks after rabies re-vaccination from a representative shelter of group B, C and D. Sample from group A was not included in the study due to time limitation. Both the number of dogs with acceptable response (RVNA ≥ 0.5 IU/ml) and the RVNA titres were significantly higher in group B than group C and D. Our results indicate that the quality of shelter management could affect rabies immune status.


Asunto(s)
Vacunas Antirrábicas , Virus de la Rabia , Rabia , Animales , Perros , Rabia/prevención & control , Rabia/veterinaria , Anticuerpos Antivirales , Vacunación/veterinaria , Anticuerpos Bloqueadores
5.
Pathogens ; 12(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36839475

RESUMEN

From wild dogs (Lycaon pictus) in the Serengeti to tigers (Panthera tigris altaica) in the Russian Far East, canine distemper virus (CDV) has been repeatedly identified as a threat to wild carnivores. Between 2020 and 2022, six Indian leopards (P. pardus fusca) presented to Nepali authorities with fatal neurological disease, consistent with CDV. Here, we report the findings of a serosurvey of wild felids from Nepal. A total of 48 serum samples were tested, comprising 28 Bengal tigers (P. t. tigris) and 20 Indian leopards. Neutralizing antibodies were identified in three tigers and six leopards, equating to seroprevalences of 11% (CI: 2.8-29.3%, n = 28) and 30% (CI: 12.8-54.3%, n = 20), respectively. More than one-third of seropositive animals were symptomatic, and three died within a week of being sampled. The predation of domestic dogs (Canis lupus familiaris) has been posited as a potential route of infection. A comparison of existing diet studies revealed that while leopards in Nepal frequently predate on dogs, tigers do not, potentially supporting this hypothesis. However, further work, including molecular analyses, would be needed to confirm this.

6.
Nanomedicine ; 49: 102655, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36681171

RESUMEN

Herein, we provide the first description of a synthetic delivery method for self-replicating replicon RNAs (RepRNA) derived from classical swine fever virus (CSFV) using a Coatsome-replicon vehicle based on Coatsome® SS technologies. This results in an unprecedented efficacy when compared to well-established polyplexes, with up to ∼65 fold-increase of the synthesis of RepRNA-encoded gene of interest (GOI). We demonstrated the efficacy of such Coatsome-replicon vehicles for RepRNA-mediated induction of CD8 T-cell responses in mice. Moreover, we provide new insights on physical properties of the RepRNA, showing that the removal of all CSFV structural protein genes has a positive effect on the translation of the GOI. Finally, we successfully engineered RepRNA constructs encoding a porcine reproductive and respiratory syndrome virus (PRRSV) antigen, providing an example of antigen expression with potential application to combat viral diseases. The versatility and simplicity of modifying and manufacturing these Coatsome-replicon vehicle formulations represents a major asset to tackle foreseeable emerging pandemics.


Asunto(s)
Enfermedades Transmisibles , ARN , Porcinos , Ratones , Animales , ARN/genética , Antígenos , Enfermedades Transmisibles/genética , Replicón/genética
7.
Vet World ; 15(10): 2399-2406, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36425135

RESUMEN

Background and Aim: Cats are a reservoir for Bartonella spp. infection in humans. Human bartonellosis causes disseminated inflammation to develop in immunocompromised patients, such as those infected with human immunodeficiency virus. However, the associated risks of Bartonella spp. infection in immunocompromised retroviral-infected cats have been inconclusive. This study aimed to evaluate the associated risks of Bartonella spp. infection with the alteration of T-lymphocyte subsets of retroviral-infected cats. Materials and Methods: We collected blood samples from 161 client-owned cats at veterinary clinics and hospitals throughout the Bangkok Metropolitan area from 2017 to 2020. The samples underwent hematological biochemical tests, feline retroviral status evaluation, Bartonella spp. polymerase chain reaction assay, immunofluorescence assay, and CD4+ and CD8+ lymphocyte counts. Risk factors associated with Bartonella spp. infection were determined by odds ratio (OR). Hematological and biochemical parameters were compared using independent t-tests. CD4+ and CD8+ lymphocyte counts and the CD4+/CD8+ ratio were compared among groups classified according to their retroviral and Bartonella spp. infection status. Results: The prevalence of Bartonella spp. in our study cohort was 16.1%, and the seroprevalence was 94.9%. Cats aged >1 year were at a higher risk of seropositivity than cats aged <1 year (OR: 4.296, 95% confidence interval: 1.010-18.275). The CD8+ percentage was significantly higher in seropositive cats (p = 0.026). There was a significant reduction in the CD4+/CD8+ ratio between cats negative for both retrovirus and Bartonella spp. infection and cats with concurrent retrovirus and Bartonella spp. infection (p = 0.041). Conclusion: In endemic countries or areas, cat owners must be made aware of the risk of exposure to Bartonella spp. due to the high rate of bacteremia and seroprevalence. Retrovirus-infected cats with concurrent Bartonella spp. infection also showed a significant, inverted CD4+/CD8+ ratio, which may be used as a novel marker in bartonellosis. Similar studies focusing on the different stages of retrovirus infection should be undertaken further to elucidate the effect of retrovirus infection on Bartonella spp. infection.

8.
Sci Rep ; 12(1): 8403, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589808

RESUMEN

In June-September 2021, we investigated severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections in domestic dogs and cats (n = 225) in Bangkok and the vicinities, Thailand. SARS-CoV-2 was detected in a dog and a cat from COVID-19 positive households. Whole genome sequence analysis identified SARS-CoV-2 delta variant of concern (B.1.617.2). Phylogenetic analysis showed that SARS-CoV-2 isolated from dog and cat were grouped into sublineage AY.30 and AY.85, respectively. Antibodies against SARS-CoV-2 could be detected in both dog (day 9) and cat (day 14) after viral RNA detection. This study raises awareness on spill-over of variant of concern in domestic animals due to human-animal interface. Thus, surveillance of SARS-CoV-2 in domestic pets should be routinely conducted.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Enfermedades de los Perros , Animales , COVID-19/epidemiología , COVID-19/veterinaria , Enfermedades de los Gatos/diagnóstico , Enfermedades de los Gatos/epidemiología , Gatos , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/epidemiología , Perros , Filogenia , SARS-CoV-2/genética , Tailandia/epidemiología
9.
Transbound Emerg Dis ; 69(5): e1365-e1373, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35106944

RESUMEN

Duck Tembusu virus (DTMUV), an emerging avian pathogenic flavivirus, causes severe neurological disorders and acute egg drop syndrome in ducks. However, the effects of DTMUV on duck immunological components and functions remain largely unknown. In this study, the dynamics of cellular and humoral immune responses of DTMUV-infected ducks were investigated. The numbers of CD4+ and CD8+ T, B and non-T and B lymphocytes as well as the levels of neutralizing antibodies were quantified in parallel with DTMUV loads in blood and target organs. Our results demonstrated that DTMUV infection caused severe losses of non-T and B lymphocyte/myeloid cell subpopulation, and reduction in phagocytic activity during 3-5 days after infection. We also found that the numbers of T and B cells were increased during the first week of DTMUV infection. A significant negative correlation between the levels of CD4+ and CD8+ T, B and non-T and B lymphocytes and viral loads in blood and target organ (spleen) was observed during the early phase of infection. Additionally, DTMUV infection induced an early and robust neutralizing antibody response, which was associated with DTMUV-specific IgM and IgG responses. The presence of neutralizing antibody also correlated with reduction of viremia and viral load in the spleen. Overall, DTMUV elicited both cellular and humoral immune responses upon infection, in which the magnitude of these responses was correlated with reduction of viremia and viral loads in the target organ (spleen). The results suggested the critical role of both cellular and humoral immunity against DTMUV infection. This study expands our understanding of the immunological events following DTMUV infection in ducks.


Asunto(s)
Infecciones por Flavivirus , Flavivirus , Enfermedades de las Aves de Corral , Animales , Anticuerpos Neutralizantes , Patos , Infecciones por Flavivirus/veterinaria , Inmunidad Humoral , Inmunoglobulina G , Inmunoglobulina M , Viremia/veterinaria
10.
Transbound Emerg Dis ; 69(4): e979-e991, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34739748

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the coronavirus disease 2019 (COVID-19) pandemic in humans since late 2019. Here, we investigated SARS-CoV-2 infection in dogs and cats during COVID-19 quarantine at private veterinary hospitals in Thailand. From April to May 2021, we detected SARS-CoV-2 in three out of 35 dogs and one out of nine cats from four out of 17 households with confirmed COVID-19 patients. SARS-CoV-2 RNA was detected from one of the nasal, oral, rectal and environmental swabs of dog-A (15 years old, mixed breed, male dog), cat-B (1 year old, domestic shorthair, male cat), dog-C (2 years old, mixed breed, female dog) and dog-D (4 years old, Pomeranian, female dog). The animals tested positive for SARS-CoV-2 RNA from 4 to 30 days after pet owners were confirmed to be COVID-19 positive. The animals consecutively tested positive for SARS-CoV-2 RNA for 4 to 10 days. One dog (dog-A) showed mild clinical signs, while the other dogs and a cat remained asymptomatic during quarantine at the hospitals. SARS-CoV-2 specific neutralizing antibodies were detected in both the dogs and cat by surrogate virus neutralization tests. Phylogenetic and genomic mutation analyses of whole genome sequences of three SARS-CoV-2 strains from the dogs and cat revealed SARS-CoV-2 of the Alpha variant (B.1.1.7 lineage). Our findings are suggestive of human-to-animal transmission of SARS-CoV-2 in COVID-19-positive households and contamination of viral RNA in the environment. Public awareness of SARS-CoV-2 infection in pet dogs and cats in close contact with COVID-19 patients should be raised.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Enfermedades de los Perros , Animales , COVID-19/epidemiología , COVID-19/veterinaria , Enfermedades de los Gatos/epidemiología , Gatos , Enfermedades de los Perros/epidemiología , Perros , Femenino , Humanos , Masculino , Filogenia , ARN Viral/genética , SARS-CoV-2 , Tailandia/epidemiología
11.
Transbound Emerg Dis ; 69(4): 2140-2147, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34180590

RESUMEN

Coronavirus disease of 2019 (COVID-19) caused by severe acute respiratory syndrome virus type 2 (SARS-CoV-2) is an emerging severe acute respiratory disease affecting global human health. In this study, a large-scale serological survey of antibodies against SARS-CoV-2 in dogs and cats was conducted during the first and second waves of COVID-19 outbreaks in Thailand, from April to December 2020. A total of 3215 serum samples were collected from dogs (n = 2102) and cats (n = 1113) living in Bangkok and in the vicinities. Serum samples were tested for SARS-CoV-2 antibodies by using an indirect multispecies enzyme-linked immunosorbent assay (ELISA). Positive and suspected samples were additionally tested for neutralizing antibodies by the surrogate virus neutralization test (sVNT). The indirect ELISA results showed that 1.66% (35 out of 2103) of dogs and 0.36% (four out of 1112) of cats were positive for SARS-CoV-2 antibodies. The sVNT results showed that all ELISA-positive and suspected samples were negative for neutralizing antibodies. Positive serum samples (35 dogs and four cats) were obtained from clinically healthy animals and animals with mild respiratory signs aged <1-13 years living in Bangkok and Samutprakarn Provinces. In summary, a serological survey revealed evidence of anti-N-IgG antibodies suggesting SARS-CoV-2 exposure in both dogs and cats during the first and second COVID-19 outbreaks in Thailand.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Enfermedades de los Perros , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/epidemiología , COVID-19/veterinaria , Enfermedades de los Gatos/epidemiología , Gatos , Enfermedades de los Perros/epidemiología , Perros , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Humanos , SARS-CoV-2 , Tailandia/epidemiología
12.
Emerg Infect Dis ; 27(8): 2208-2211, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34287126

RESUMEN

To investigate an outbreak of African horse sickness (AHS) on a horse farm in northeastern Thailand, we used whole-genome sequencing to detect and characterize the virus. The viruses belonged to serotype 1 and contained unique amino acids (95V,166S, 660I in virus capsid protein 2), suggesting a single virus introduction to Thailand.


Asunto(s)
Virus de la Enfermedad Equina Africana , Enfermedad Equina Africana , Enfermedad Equina Africana/epidemiología , Virus de la Enfermedad Equina Africana/genética , Animales , Granjas , Caballos , Serogrupo , Tailandia/epidemiología
13.
Front Vet Sci ; 8: 637682, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996967

RESUMEN

Among swine genetic markers, the highly polymorphic swine leukocyte antigen (SLA) is one of the key determinants, associated with not only immune responses but also reproductive performance and meat quality. The objective of this study was to characterize the SLA class I and II diversities in the commercial pig populations. In this study, a total number of 158 pigs (126 gilts and 32 boars) were randomly selected from different breeding herds of five major pig-producing companies, which covered ~70% of Thai swine production. The results indicate that a moderate level of SLA diversity was maintained in the Thai swine population, despite the performance-oriented breeding scheme. The highly common SLA class I alleles were SLA-1*08:XX, SLA-2*02:XX, and SLA-3*04:XX at a combined frequency of 30.1, 18.4, and 34.5%, respectively, whereas DRB1*04:XX, DQB1*02:XX and DQA*02:XX were the common class II alleles at 22.8, 33.3, and 38.6%, respectively. The haplotype Lr-32.0 (SLA-1*07:XX, SLA-2*02:XX, and SLA-3*04:XX) and Lr-0.23 (DRB1*10:XX, DQB1*06:XX, DQA* 01:XX) was the most common SLA class I and II haplotype, at 15.5 and 14.6%, respectively. Common class I and II haplotypes were also observed, which Lr-22.15 was the most predominant at 11.1%, followed by Lr-32.12 and Lr-4.2 at 10.8 and 7.9%, respectively. To our knowledge, this is the first report of SLA class I and II diversities in the commercial pigs in Southeast Asia. The information of the common SLA allele(s) in the population could facilitate swine genetic improvement and future vaccine design.

14.
J Wildl Dis ; 57(2): 464-466, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33822169

RESUMEN

Canine distemper virus (CDV) is recognized as a conservation threat to Amur tigers (Panthera tigris altaica) in Russia, but the risk to other subspecies remains unknown. We detected CDV neutralizing antibodies in nine of 21 wild-caught Sumatran tigers (42.9%), including one sampled on the day of capture, confirming exposure in the wild.


Asunto(s)
Anticuerpos Antivirales/sangre , Virus del Moquillo Canino , Tigres/sangre , Animales , Animales Salvajes , Anticuerpos Neutralizantes , Indonesia/epidemiología , Pruebas de Neutralización , Proyectos Piloto , Estudios Seroepidemiológicos
15.
Sci Rep ; 10(1): 9617, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541822

RESUMEN

CRISPR/Cas9 enables dsDNA viral genome engineering. However, the lack of RNA targeting activities limits the ability of CRISPR/Cas9 to combat RNA viruses. The recently identified class II type VI CRISPR/Cas effectors (Cas13) are RNA-targeting CRISPR enzymes that enable RNA cleavage in mammalian and plant cells. We sought to knockdown the viral RNA of porcine reproductive and respiratory syndrome virus (PRRSV) directly by exploiting the CRISPR/Cas13b system. Effective mRNA cleavage by CRISPR/Cas13b-mediated CRISPR RNA (crRNA) targeting the ORF5 and ORF7 genes of PRRSV was observed. To address the need for uniform delivery of the Cas13b protein and crRNAs, an all-in-one system expressing Cas13b and duplexed crRNA cassettes was developed. Delivery of a single vector carrying double crRNAs enabled the simultaneous knockdown of two PRRSV genes. Transgenic MARC-145 cells stably expressing the Cas13b effector and crRNA mediated by lentiviral-based transduction showed a robust ability to splice the PRRSV genomic RNA and subgenomic RNAs; viral infection was almost completely abrogated by the combination of double crRNAs simultaneously targeting the ORF5 and ORF7 genes. Our study indicated that the CRISPR/Cas13b system can effectively knockdown the PRRSV genome in vitro and can potentially be used as a potent therapeutic antiviral strategy.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Edición Génica , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , ARN Viral/metabolismo , Animales , Línea Celular , Citometría de Flujo , Edición Génica/métodos , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , ARN Mensajero/metabolismo , Porcinos
16.
Front Immunol ; 10: 579, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30972072

RESUMEN

Impaired innate and adaptive immune responses are evidenced throughout the course of PRRSV infection. We previously reported that interleukin-1 receptor antagonist (IL-1Ra) was involved in PRRSV-induced immunosuppression during an early phase of infection. However, the exact mechanism associated with PRRSV-induced IL-1Ra immunomodulation remains unknown. To explore the immunomodulatory properties of PRRSV-induced IL-1Ra on porcine immune functions, monocyte-derived dendritic cells (MoDC) and leukocytes were cultured with type 2 PRRSV, and the immunological role of IL-1Ra was assessed by addition of anti-porcine IL-1Ra Ab. The results demonstrated that PRRSV-induced IL-1Ra reduced phagocytosis, surface expression of MHC II (SLA-DR) and CD86, as well as downregulation of IFNA and IL1 gene expression in the MoDC culture system. Interestingly, IL-1Ra secreted by the PRRSV-infected MoDC also inhibited T lymphocyte differentiation and proliferation, but not IFN-γ production. Although PRRSV-induced IL-1Ra was not directly linked to IL-10 production, it contributed to the differentiation of regulatory T lymphocytes (Treg) within the culture system. Taken together, our results demonstrated that PRRSV-induced IL-1Ra downregulates innate immune functions, T lymphocyte differentiation and proliferation, and influences collectively with IL-10 in the Treg induction. The immunomodulatory roles of IL-1Ra elucidated in this study increase our understanding of the immunobiology of PRRSV.


Asunto(s)
Inmunomodulación , Proteína Antagonista del Receptor de Interleucina 1/fisiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Inmunidad Adaptativa , Animales , Citocinas/biosíntesis , Inmunidad Innata , Interleucina-6/genética , Activación de Linfocitos , Porcinos , Linfocitos T/inmunología
17.
Vet Sci ; 4(1)2017 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-29056666

RESUMEN

Feline immunodeficiency virus (FIV) is a lentivirus of domestic cats that shares several similarities with its human counterpart, human immunodeficiency virus (HIV). Their analogies include genomic organization, lymphocyte tropism, viral persistence and induction of immunodeficiency. FIV is the only lentivirus for which a commercial vaccine is registered for prevention in either human or veterinary medicine. This provides a unique opportunity to investigate the mechanisms of protection induced by lentivirus vaccines at the population level and might contribute to the development of efficacious HIV vaccines. As well as having comparative value for vaccine studies, FIV research has shed some light on the relationship between lentiviral tropism and pathogenesis. Recent studies in our laboratory demonstrated that the interaction between FIV and its primary receptor changes as disease progresses, reminiscent of the receptor switch observed as disease progresses in HIV infected individuals. Here we summarise findings illustrating that, in addition to its veterinary significance, FIV has comparative value, providing a useful model to explore lentivirus-host interactions and to examine potential immune correlates of protection against HIV infection.

18.
Vaccine ; 33(8): 977-84, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25613718

RESUMEN

Across human and veterinary medicine, vaccines against only two retroviral infections have been brought to market successfully, the vaccines against feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV). FeLV vaccines have been a global success story, reducing virus prevalence in countries where uptake is high. In contrast, the more recent FIV vaccine was introduced in 2002 and the degree of protection afforded in the field remains to be established. However, given the similarities between FIV and HIV, field studies of FIV vaccine efficacy are likely to advise and inform the development of future approaches to HIV vaccination. Here we assessed the neutralising antibody response induced by FIV vaccination against a panel of FIV isolates, by testing blood samples collected from client-owned vaccinated Australian cats. We examined the molecular and phenotypic properties of 24 envs isolated from one vaccinated cat that we speculated might have become infected following natural exposure to FIV. Cats vaccinated against FIV did not display broadly neutralising antibodies, suggesting that protection may not extend to some virulent recombinant strains of FIV circulating in Australia.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Síndrome de Inmunodeficiencia Adquirida del Felino/prevención & control , Virus de la Inmunodeficiencia Felina/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Gatos , Femenino , Humanos , Virus de la Inmunodeficiencia Felina/clasificación , Virus de la Inmunodeficiencia Felina/genética , Masculino , Filogenia , Provirus/genética , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Interferencia Viral
19.
Retrovirology ; 11: 95, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25430586

RESUMEN

BACKGROUND: Feline immunodeficiency virus (FIV) infection is mediated by sequential interactions with CD134 and CXCR4. Field strains of virus vary in their dependence on cysteine-rich domain 2 (CRD2) of CD134 for infection. FINDINGS: Here, we analyse the receptor usage of viral variants in the blood of 39 naturally infected cats, revealing that CRD2-dependent viral variants dominate in early infection, evolving towards CRD2-independence with disease progression. CONCLUSIONS: These findings are consistent with a shift in CRD2 of CD134 usage with disease progression.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida del Felino/etiología , Virus de la Inmunodeficiencia Felina/fisiología , Receptores OX40/fisiología , Animales , Gatos , Progresión de la Enfermedad , Síndrome de Inmunodeficiencia Adquirida del Felino/virología , Glicoproteínas/fisiología , Glicosilación , Estructura Terciaria de Proteína , Receptores OX40/química , Proteínas del Envoltorio Viral/fisiología , Tropismo Viral
20.
Immunol Lett ; 151(1-2): 23-30, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23396105

RESUMEN

DNA vaccines encoding allergens are promising immunotherapeutics to prevent or to treat allergy through induction of allergen-specific Th1 responses. Despite anti-allergy effects observed in small rodents, DNA-based vaccines are weak immunogens in primates and humans and particularly when administered by conventional injection. The goal of the present study was to improve the immunogenicity of a prophylactic vaccine encoding the major house dust mite allergen Der p 2. In this context, we evaluated the influence of different DNA backbones including notably intron and CpG enriched sequence, the DNA dose, the in vivo delivery by electroporation as well as the heterologous prime boost regimen on the vaccine efficiency. We found that a minimal allergen expression level threshold must be reached to induce the production of specific antibodies but beyond this limit, the intensity of the immune response was independent on the DNA dose and allergen expression. The in vivo DNA delivery by electroporation drastically enhanced the production of specific antibodies but not the IFNg secretion. Vaccination of naïve mice with DNA encoding Der p 2 delivered by electroporation even at very low dose (2µg) prevented the development of house dust mite allergy through Th1-skewed immune response characterized by the drastic reduction of allergen-specific IgE, IL-5 and lung inflammation together with the induction of strong specific IgG2a titers and IFNg secretion. CpG cassette in the DNA backbone does not play a critical role in the efficient prophylaxis. Finally, comparable protective immune responses were observed when using heterologous DNA prime/protein boost or homologous DNA prime/boost. Taken together, these data suggest that the potent Th1 response induced by DNA-based vaccine encoding allergens through electroporation provides the rationale for the evaluation of DNA encoding Der p 2 into HDM allergy clinical trials.


Asunto(s)
Alérgenos/inmunología , Antígenos Dermatofagoides/inmunología , Proteínas de Artrópodos/inmunología , Hipersensibilidad/inmunología , Hipersensibilidad/prevención & control , Vacunas de ADN/inmunología , Alérgenos/genética , Animales , Antígenos Dermatofagoides/genética , Proteínas de Artrópodos/genética , Línea Celular , Expresión Génica , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones , Vacunas de ADN/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA