Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CNS Neurol Disord Drug Targets ; 22(7): 1070-1089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35702800

RESUMEN

BACKGROUND: Addiction is always harmful to the human body. Smartphone addiction also affects students' mental and physical health. AIM: This study aims to determine the research volume conducted on students who are affected by smartphone addiction and design a database. We intended to highlight critical problems for future research. In addition, this paper enterprises a comprehensive and opinion-based image of smartphone-addicted students. METHODOLOGY: We used two types of methods, such as systematic literature review and research questions based on the Scopus database to complete this study. We found 27 research articles and 11885 subjects (mean ±SD: 440.19 ± 513.58) using the PRISMA technique in this study. Additionally, we have deeply investigated evidence to retrieve the current understanding of smartphone addiction from physical changes, mental changes, behavioural changes, impact on performance, and significant concepts. Furthermore, the effect of this addiction has been linked to cancers, oxidative stress, and neurodegenerative disorders. RESULTS: This work has also revealed the future direction and research gap on smartphone addiction among students and has also tried to provide goals for upcoming research to be accomplished more significantly and scientifically. CONCLUSION: This study suggests future analysis towards identifying novel molecules and pathways for the treatment and decreasing the severity of mobile addiction.


Asunto(s)
Conducta Adictiva , Salud Mental , Humanos , Trastorno de Adicción a Internet , Estudiantes , Teléfono Inteligente , Estrés Oxidativo
2.
Curr Pharm Des ; 28(45): 3618-3636, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36464881

RESUMEN

Insomnia is well-known as trouble in sleeping and enormously influences human life due to the shortage of sleep. Reactive Oxygen Species (ROS) accrue in neurons during the waking state, and sleep has a defensive role against oxidative damage and dissipates ROS in the brain. In contrast, insomnia is the source of inequity between ROS generation and removal by an endogenous antioxidant defense system. The relationship between insomnia, depression, and anxiety disorders damages the cardiovascular systems' immune mechanisms and functions. Traditionally, polysomnography is used in the diagnosis of insomnia. This technique is complex, with a long time overhead. In this work, we have proposed a novel machine learning-based automatic detection system using the R-R intervals extracted from a single-lead electrocardiograph (ECG). Additionally, we aimed to explore the role of oxidative stress and inflammation in sleeping disorders and cardiovascular diseases, antioxidants' effects, and the psychopharmacological effect of herbal medicine. This work has been carried out in steps, which include collecting the ECG signal for normal and insomnia subjects, analyzing the signal, and finally, automatic classification. We used two approaches, including subjects (normal and insomnia), two sleep stages, i.e., wake and rapid eye movement, and three Machine Learning (ML)-based classifiers to complete the classification. A total number of 3000 ECG segments were collected from 18 subjects. Furthermore, using the theranostics approach, the role of mitochondrial dysfunction causing oxidative stress and inflammatory response in insomnia and cardiovascular diseases was explored. The data from various databases on the mechanism of action of different herbal medicines in insomnia and cardiovascular diseases with antioxidant and antidepressant activities were also retrieved. Random Forest (RF) classifier has shown the highest accuracy (subjects: 87.10% and sleep stage: 88.30%) compared to the Decision Tree (DT) and Support Vector Machine (SVM). The results revealed that the suggested method could perform well in classifying the subjects and sleep stages. Additionally, a random forest machine learning-based classifier could be helpful in the clinical discovery of sleep complications, including insomnia. The evidence retrieved from the databases showed that herbal medicine contains numerous phytochemical bioactives and has multimodal cellular mechanisms of action, viz., antioxidant, anti-inflammatory, vasorelaxant, detoxifier, antidepressant, anxiolytic, and cell-rejuvenator properties. Other herbal medicines have a GABA-A receptor agonist effect. Hence, we recommend that the theranostics approach has potential and can be adopted for future research to improve the quality of life of humans.


Asunto(s)
Enfermedades Cardiovasculares , Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos del Sueño-Vigilia , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Calidad de Vida , Especies Reactivas de Oxígeno , Sueño , Inflamación/tratamiento farmacológico , Estrés Oxidativo , Antiinflamatorios , Aprendizaje Automático , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...