Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Food Microbiol ; 410: 110495, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37980813

RESUMEN

Aspergilli can be used to produce food but can spoil it as well. Both food production and spoilage are initiated by germination of the conidia of these fungi that have been introduced by inoculation and contamination, respectively. Germination of these spores includes activation, swelling, establishment of cell polarity, and formation of a germ tube. So far, only quantitative single-species germination studies of fungal spores have been performed. Here, spore germination of the food spoilage fungus Aspergillus niger was studied quantitatively in mono-culture or when mixed with other food-relevant aspergilli (Aspergillus nidulans, Aspergillus terreus, Aspergillus clavatus, and Aspergillus oryzae). In the presence of the germination inducing amino acids proline or alanine, but not in the case of the lowly inducing amino acid arginine, the incidence of swelling and germ tube formation was reduced when 35,000 extra conidia of Aspergillus niger were added to wells containing 5000 of these spores. Adding 35,000 spores of one of the other aspergilli also did not have an effect on germination in the presence of arginine, but the germination inhibition was stronger when compared to the extra A. niger spores in the case of alanine. A similar effect was obtained with proline. Together, results show that the germination of A. niger conidia is impacted by the density of its own spores and that of other aspergilli under favorable nutritional conditions. These results increase our understanding of food spoilage by fungi and can be used to optimize food production with fungi.


Asunto(s)
Alanina , Aspergillus niger , Esporas Fúngicas , Alanina/metabolismo , Prolina/metabolismo , Prolina/farmacología , Arginina/farmacología
2.
Antonie Van Leeuwenhoek ; 115(9): 1151-1164, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35857156

RESUMEN

Aspergilli are among the most abundant fungi worldwide. They degrade organic material and can be pathogens of plants and animals. Aspergilli spread by forming high numbers of conidia. Germination of these stress resistant asexual spores is characterized by a swelling and a germ tube stage. Here, we show that conidia of Aspergillus niger, Aspergillus oryzae, Aspergillus clavatus, Aspergillus nidulans and Aspergillus terreus show different swelling and germ tube formation dynamics in pure water or in water supplemented with (in)organic nutrients. Apart from inter-species heterogeneity, intra-species heterogeneity was observed within spore populations of the aspergilli except for A. terreus. Sub-populations of conidia differing in size and/or contrast showed different swelling and germ tube formation dynamics. Together, data imply that aspergilli differ in their competitive potential depending on the substrate. Moreover, results suggest that intra-species heterogeneity provides a bet hedging mechanism to optimize survival of aspergilli.


Asunto(s)
Aspergillus niger , Agua , Animales , Esporas Fúngicas/metabolismo
3.
Antonie Van Leeuwenhoek ; 115(1): 103-110, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34800185

RESUMEN

Penicillium roqueforti is used for the production of blue-veined cheeses but is a spoilage fungus as well. It reproduces asexually by forming conidia. Germination of these spores can start the spoilage process of food. Germination is typically characterized by the processes of activation, swelling and germ tube formation. Here, we studied nutrient requirements for germination of P. roqueforti conidia. To this end, > 300 conidia per condition were monitored in time using an oCelloScope imager and an asymmetric model was used to describe the germination process. Spores were incubated for 72 h in NaNO3, Na2HPO4/NaH2PO4, MgSO4 and KCl with 10 mM glucose or 10 mM of 1 out of the 20 proteogenic amino acids. In the case of glucose, the maximum number of spores (Pmax) that had formed germ tubes was 12.7%, while time needed to reach 0.5 Pmax (τ) was about 14 h. Arginine and alanine were the most inducing amino acids with a Pmax of germ tube formation of 21% and 13%, respectively, and a τ of up to 33.5 h. Contrary to the typical stages of germination of fungal conidia, data show that P. roqueforti conidia can start forming germ tubes without a detectable swelling stage.


Asunto(s)
Aminoácidos , Penicillium , Glucosa , Esporas Fúngicas
4.
Fungal Biol ; 125(3): 231-238, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33622539

RESUMEN

Aspergillus niger reproduces asexually by forming conidia. Here, the minimal nutrient requirements were studied that activate germination of A. niger conidia. To this end, germination was monitored in time using an oCelloScope imager. Data was used as input in an asymmetric model to describe the process of swelling and germ tube formation. The maximum number of spores (Pmax) that were activated to swell and to form germ tubes was 32.54% and 20.51%, respectively, in minimal medium with 50 mM glucose. In contrast, Pmax of swelling and germ tube formation was <1% in water or 50 mM glucose. Combining 50 mM glucose with either NaNO3, KH2PO4, or MgSO4 increased Pmax of swelling and germination up to 15.25% and 5.4%, respectively, while combining glucose with two of these inorganic components further increased these Pmax values up to 25.85% and 10.99%. Next, 10 mM amino acid was combined with a phosphate buffer and MgSO4. High (e.g. proline), intermediate and low (e.g. cysteine) inducing amino acids were distinguished. Together, a combination of an inducing carbon source with either inorganic phosphate, inorganic nitrogen or magnesium sulphate is the minimum requirement for A. niger conidia to germinate.


Asunto(s)
Aminoácidos , Aspergillus niger , Glucosa , Nutrientes , Esporas Fúngicas
5.
Appl Microbiol Biotechnol ; 105(5): 1953-1964, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33576886

RESUMEN

Therapeutic options to treat invasive fungal infections are still limited. This makes the development of novel antifungal agents highly desirable. Naturally occurring antifungal peptides represent valid candidates, since they are not harmful for human cells and are endowed with a wide range of activities and their mechanism of action is different from that of conventional antifungal drugs. Here, we characterized for the first time the antifungal properties of novel peptides identified in human apolipoprotein B. ApoB-derived peptides, here named r(P)ApoBLPro, r(P)ApoBLAla and r(P)ApoBSPro, were found to have significant fungicidal activity towards Candida albicans (C. albicans) cells. Peptides were also found to be able to slow down metabolic activity of Aspergillus niger (A. niger) spores. In addition, experiments were carried out to clarify the mechanism of fungicidal activity of ApoB-derived peptides. Peptides immediately interacted with C. albicans cell surfaces, as indicated by fluorescence live cell imaging analyses, and induced severe membrane damage, as indicated by propidium iodide uptake induced upon treatment of C. albicans cells with ApoB-derived peptides. ApoB-derived peptides were also tested on A. niger swollen spores, initial hyphae and branched mycelium. The effects of peptides were found to be more severe on swollen spores and initial hyphae compared to mycelium. Fluorescence live cell imaging analyses confirmed peptide internalization into swollen spores with a consequent accumulation into hyphae. Altogether, these findings open interesting perspectives to the application of ApoB-derived peptides as effective antifungal agents. KEY POINTS: Human cryptides identified in ApoB are effective antifungal agents. ApoB-derived cryptides exert fungicidal effects towards C. albicans cells. ApoB-derived cryptides affect different stages of growth of A. niger. Graphical abstract.


Asunto(s)
Antifúngicos , Péptidos Catiónicos Antimicrobianos , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Apolipoproteínas B , Candida albicans , Humanos , Hifa , Pruebas de Sensibilidad Microbiana
6.
Food Res Int ; 136: 109287, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32846509

RESUMEN

Penicillium roqueforti is a major cause of fungal food spoilage. Its conidia are the main dispersal structures of this fungus and therefore the main cause of food contamination. These stress resistant asexual spores can be killed by preservation methods such as heat treatment. Here, the effects of cultivation time and temperature on thermal resistance of P. roqueforti conidia were studied. To this end, cultures were grown for 3, 5, 7 and 10 days at 25 °C or for 7 days at 15, 25 and 30 °C. Conidia of 3- and 10-day-old cultures that had been grown at 25 °C had D56-values of 1.99 ± 0.15 min and 5.31 ± 1.04 min, respectively. The effect of cultivation temperature was most pronounced between P. roqueforti conidia cultured for 7 days at 15 °C and 30 °C, where D56-values of 1.12 ± 0.05 min and 4.19 ± 0.11 min were found, respectively. Notably, D56-values were not higher when increasing both cultivation time and temperature by growing for 10 days at 30 °C. A correlation was found between heat resistance of conidia and levels of trehalose and arabitol, while this was not found for glycerol, mannitol and erythritol. RNA-sequencing showed that the expression profiles of conidia of 3- to 10-day-old cultures that had been grown at 25 °C were distinct from conidia that had been formed at 15 °C and 30 °C for 7 days. Only 33 genes were upregulated at both prolonged incubation time and increased growth temperature. Their encoded proteins as well as trehalose and arabitol may form the core of heat resistance of P. roqueforti conidia.


Asunto(s)
Microbiología de Alimentos , Calor , Penicillium/fisiología , Transcriptoma , Secuencia de Bases , Penicillium/química , Penicillium/genética , ARN de Hongos/química , Esporas Fúngicas/fisiología , Alcoholes del Azúcar/análisis , Factores de Tiempo , Trehalosa/análisis
7.
Sci Rep ; 10(1): 1536, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001779

RESUMEN

Aspergillus niger is used by the industry to produce enzymes and metabolites such as citric acid. In liquid cultures, it can grow as a dispersed mycelium or as micro-colonies with a width in the micrometer to millimeter range. Here, it was assessed whether expression of genes encoding secreted enzymes depends on mycelium morphology. To this end, expression of the reporter gene gfp from the promoters of the glucoamylase gene glaA, the feruloyl esterase gene faeA and the α-glucuronidase gene aguA was causally related to micro-colony size within a liquid shaken culture. Data could be fitted by hyperbolic functions, implying that the genes encoding these secreted proteins are expressed in a shell at the periphery of the micro-colony. The presence of such a shell was confirmed by confocal microscopy. Modelling predicted that the width of these zones was 13 to 156 µm depending on growth medium and micro-colony diameter. Together, data indicate that the highest productive micro-colonies are those colonies that have a radius ≤ the width of the peripheral expression zone.


Asunto(s)
Aspergillus niger/enzimología , Aspergillus niger/genética , Regulación Fúngica de la Expresión Génica/genética , Hidrolasas de Éster Carboxílico/genética , Proliferación Celular/genética , Proteínas Fúngicas/genética , Glucano 1,4-alfa-Glucosidasa/genética , Glicósido Hidrolasas/genética , Micelio/metabolismo , Regiones Promotoras Genéticas/genética
8.
Antonie Van Leeuwenhoek ; 111(3): 311-322, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28965153

RESUMEN

Aspergillus niger secretes proteins throughout the colony except for the zone that forms asexual spores called conidia. Inactivation of flbA that encodes a regulator of G-protein signaling results in colonies that are unable to reproduce asexually and that secrete proteins throughout the mycelium. In addition, the ΔflbA strain shows cell lysis and has thinner cell walls. Expression analysis showed that 38 predicted transcription factor genes are differentially expressed in strain ΔflbA. Here, the most down-regulated predicted transcription factor gene, called fum21, was inactivated. Growth, conidiation, and protein secretion were not affected in strain Δfum21. Whole genome expression analysis revealed that 63 and 11 genes were down- and up-regulated in Δfum21, respectively, when compared to the wild-type strain. Notably, 24 genes predicted to be involved in secondary metabolism were down-regulated in Δfum21, including 10 out of 12 genes of the fumonisin cluster. This was accompanied by absence of fumonisin production in the deletion strain and a 25% reduction in production of pyranonigrin A. Together, these results link FlbA-mediated sporulation-inhibited secretion with mycotoxin production.


Asunto(s)
Aspergillus niger/genética , Aspergillus niger/metabolismo , Fumonisinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica
9.
Fungal Genet Biol ; 98: 61-70, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011318

RESUMEN

Conidia of Aspergillus niger are produced on conidiophores. Here, maturation of conidia on these asexual reproductive structures was studied. Pigmented conidia that had developed on conidiophores for 2, 5, and 8days were similarly resistant to heat and were metabolically active as shown by CO2 release and conversion of the metabolic probe Tempone. A total number of 645-2421 genes showed a ⩾2-fold change in expression when 2-day-old conidia were compared to 5- and 8-day-old spores. Melanin was extracted more easily from the cell wall of 2-day-old conidia when compared to the older spores. In addition, mannitol content and germination rate of the 2-day-old conidia were higher. Dispersal efficiency by water was lower in the case of the 8-day-old conidia but no differences were observed in dispersal by wind and a hydrophobic moving object. These data and the fact that only a minor fraction of the conidia on a conidiophore were dispersed in the assays imply that a single colony of A. niger releases a heterogeneous population of conidia. This heterogeneity would provide a selective advantage in environments with rapidly changing conditions such as availability of water.


Asunto(s)
Aspergillus niger/genética , Proteínas Fúngicas/genética , Heterogeneidad Genética , Esporas Fúngicas/genética , Aspergillus niger/crecimiento & desarrollo , Pared Celular/metabolismo , Calor , Reproducción Asexuada/genética , Esporas Fúngicas/crecimiento & desarrollo
10.
Antonie Van Leeuwenhoek ; 100(2): 219-29, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21626092

RESUMEN

The rep1 gene of the maize pathogen Ustilago maydis encodes a pre-pro-protein that is processed in the secretory pathway into 11 peptides. These so-called repellents form amphipathic amyloid fibrils at the surface of aerial hyphae. A SG200 strain in which the rep1 gene is inactivated (∆rep1 strain) is affected in aerial hyphae formation. We here assessed changes in global gene expression as a consequence of the inactivation of the rep1 gene. Microarray analysis revealed that only 31 genes in the ∆rep1 SG200 strain had a fold change in expression of ≥2. Twenty-two of these genes were up-regulated and half of them encode small secreted proteins (SSPs) with unknown functions. Seven of the SSP genes and two other genes that are over-expressed in the ∆rep1 SG200 strain encode proteins that can be classified as secreted cysteine-rich proteins (SCRPs). Interestingly, most of the SCRPs are predicted to form amyloids. The SCRP gene um00792 showed the highest up-regulation in the ∆rep1 strain. Using GFP as a reporter, it was shown that this gene is over-expressed in the layer of hyphae at the medium-air interface. Taken together, it is concluded that inactivation of rep1 hardly affects the expression profile of U. maydis, despite the fact that the mutant strain has a strong reduced ability to form aerial hyphae.


Asunto(s)
Proteínas Fúngicas/metabolismo , Silenciador del Gen , Hifa/crecimiento & desarrollo , Péptidos/metabolismo , Precursores de Proteínas/metabolismo , Ustilago/genética , Amiloide/metabolismo , Northern Blotting , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Proteínas Fluorescentes Verdes/metabolismo , Hifa/genética , Hifa/metabolismo , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos , Péptidos/genética , Precursores de Proteínas/genética , Análisis de Secuencia de Proteína , Transformación Genética , Regulación hacia Arriba , Ustilago/crecimiento & desarrollo , Ustilago/metabolismo
11.
J Biol Chem ; 284(14): 9153-9, 2009 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19164282

RESUMEN

Repellents of the maize pathogen Ustilago maydis are involved in formation of hydrophobic aerial hyphae and in cellular attachment. These peptides, called Rep1-1 to Rep1-11, are encoded by the rep1 gene and result from cleavage of the precursor protein Rep1 during passage of the secretion pathway. Using green fluorescent protein as a reporter, we here show that rep1 is expressed in filaments and not in the yeast form of U. maydis. In situ hybridization localized rep1 mRNA in the apex of the filament, which correlates with the expected site of secretion of the repellents into the cell wall. We also produced a synthetic peptide, Rep1-1. This peptide reduced the water surface tension to as low as 36 mJ m(-2). In addition, it formed amyloid-like fibrils as was shown by negative staining, by thioflavin T fluorescence, and by x-ray diffraction. These fibrils were not soluble in SDS but could be dissociated with trifluoroacetic acid. The repellents in the hyphal cell wall had a similar solubility and also stained with thioflavin T, strongly indicating that they are present as amyloid fibrils. However, such fibrils could not be observed at the hyphal surface. This can be explained by the fact that the Rep1-1 filaments decrease in length at increasing concentrations. Taken together, we have identified the second class of fungal proteins that form functional amyloid-like filaments at the hyphal surface.


Asunto(s)
Amiloide/metabolismo , Proteínas Fúngicas/metabolismo , Fragmentos de Péptidos/metabolismo , Ustilago/metabolismo , Ustilago/patogenicidad , Amiloide/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Microscopía Electrónica , Fragmentos de Péptidos/genética , Ustilago/genética , Ustilago/ultraestructura
12.
Microbiology (Reading) ; 152(Pt 12): 3607-3612, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17159213

RESUMEN

Ustilago maydis contains one repellent and two class I hydrophobin genes in its genome. The repellent gene rep1 has been described previously. It encodes 11 secreted repellent peptides that result from the cleavage of a precursor protein at KEX2 recognition sites. The hydrophobin gene hum2 encodes a typical class I hydrophobin of 117 aa, while hum3 encodes a hydrophobin that is preceded by 17 repeat sequences. These repeats are separated, like the repellent peptides, by KEX2 recognition sites. Gene hum2, but not hum3, was shown to be expressed in a cross of two compatible wild-type strains, suggesting a role of the former hydrophobin gene in aerial hyphae formation. Indeed, aerial hyphae formation was reduced in a Delta hum2 cross. However, the reduction in aerial hyphae formation was much more dramatic in the Delta rep1 cross. Moreover, colonies of the Delta rep1 cross were completely wettable, while surface hydrophobicity was unaffected and only slightly reduced in the Delta hum2 and the Delta hum2 Delta hum3 cross, respectively. It was also shown that the repellents and not the hydrophobins are involved in attachment of hyphae to hydrophobic Teflon. Deleting either or both hydrophobin genes in the Delta rep1 strains did not further affect aerial hyphae formation, surface hydrophobicity and attachment. From these data it is concluded that hydrophobins of U. maydis have been functionally replaced, at least partially, by repellents.


Asunto(s)
Proteínas Fúngicas/fisiología , Hifa/fisiología , Precursores de Proteínas/fisiología , Ustilago/fisiología , Cruzamientos Genéticos , Proteínas Fúngicas/genética , Eliminación de Gen , Interacciones Hidrofóbicas e Hidrofílicas , Hifa/genética , Microscopía , Morfogénesis , Precursores de Proteínas/genética , Ustilago/genética
13.
Fungal Genet Biol ; 41(12): 1099-1103, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15586449

RESUMEN

Fluorescent DNA and peptide nucleic acid (PNA) probes were used for in situ hybridisations in colonies of Schizophyllum commune and Aspergillus niger. DNA probes for 18S rRNA did not diffuse through the cell wall after mild chemical fixation. After permeabilising the cell wall with lysing enzymes or slow freezing and embedding, hybridisation was still poor and not reproducible. In contrast, PNA probes did diffuse through the cell wall after mild chemical fixation and reproducible fluorescent signals were obtained. The rRNA signal was most intense in the apical compartment of hyphae of S. commune. Within this compartment, the signal was lower at the extreme apex. Apparently, ribosomes are unevenly distributed in hyphae. In S. commune, the mRNA of the SC3 gene was also detected with a PNA probe. The ratio between 18S rRNA and SC3 mRNA signals were variable between hyphae and their compartments. This is the first report of using PNA probes for in situ hybridisation of mRNA in fungi. The method provides a powerful tool to study gene expression.


Asunto(s)
Aspergillus niger/genética , Perfilación de la Expresión Génica/métodos , Hibridación Fluorescente in Situ/métodos , Ácidos Nucleicos de Péptidos/metabolismo , Schizophyllum/genética , Genes Fúngicos/genética , Hifa/genética , ARN de Hongos/análisis , ARN Mensajero/análisis , ARN Ribosómico 18S/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...