Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Equine Vet J ; 54(2): 379-389, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33704819

RESUMEN

BACKGROUND: Equine parvovirus-hepatitis (EqPV-H) research is in its infancy. Information regarding prevalence, geographical distribution, genetic diversity, pathogenesis and risk factors enhances understanding of this potentially fatal infection. OBJECTIVES: Determining the prevalence of EqPV-H in Austrian equids. Investigating factors increasing probability of infection, liver-associated biochemistry parameters, concurrent equine hepacivirus (EqHV) infection and phylogenetic analysis of Austrian EqPV-H variants. STUDY DESIGN: Cross-sectional study. METHODS: Sera from 259 horses and 13 donkeys in Austria were analysed for anti-EqPV-H VP1-specific antibodies by luciferase immunoprecipitation system (LIPS) and EqPV-H DNA by nested polymerase chain reaction (PCR). Associations between infection status, sex and age were described. Glutamate dehydrogenase (GLDH), gamma-glutamyl transferase (GGT), bile acids and albumin concentrations were compared between horses with active infection and PCR-negative horses. PCR targeting partial EqPV-H NS1 was performed and phylogenetic analysis of Austrian EqPV-H variants was conducted. Complete coding sequences (CDS) of four Austrian variants were determined by next-generation sequencing (NGS) and compared with published sequences. RESULTS: Horses' EqPV-H seroprevalence was 30.1% and DNA prevalence was 8.9%. One horse was co-infected with EqHV. Significantly, higher probability of active EqPV-H infection was identified in 16- to 31-year-old horses, compared with 1- to 8-year-old horses (P = 0.002; OR = 8.19; 95% CI = 1.79 to 37.50) and 9- to 15-year-old horses (P = 0.03; OR = 2.96; 95% CI = 1.08 to 8.17). Liver-associated plasma parameters were not significantly different between horses with active infection and controls. Austrian EqPV-H variants revealed high similarity to sequences worldwide. No evidence of EqPV-H was detected in donkeys. MAIN LIMITATIONS: Equids' inclusion depended upon owner consent. There was only one sampling point per animal and the sample of donkeys was small. CONCLUSIONS: EqPV-H antibodies and DNA are frequently detected in Austrian horses, without associated hepatitis in horses with active infection. The risk of active EqPV-H infection increases with increasing age. Phylogenetic evidence supports close relation of EqPV-H variants globally, including Austrian variants.


Asunto(s)
Hepatitis Viral Animal , Hepatitis , Enfermedades de los Caballos , Infecciones por Parvoviridae , Parvovirus , Animales , Austria/epidemiología , Estudios Transversales , Equidae , Enfermedades de los Caballos/epidemiología , Caballos , Infecciones por Parvoviridae/veterinaria , Parvovirus/genética , Filogenia , Estudios Seroepidemiológicos
2.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33658347

RESUMEN

Transcriptional profiling provides global snapshots of virus-mediated cellular reprogramming, which can simultaneously encompass pro- and antiviral components. To determine early transcriptional signatures associated with HCV infection of authentic target cells, we performed ex vivo infections of adult primary human hepatocytes (PHHs) from seven donors. Longitudinal sampling identified minimal gene dysregulation at six hours post infection (hpi). In contrast, at 72 hpi, massive increases in the breadth and magnitude of HCV-induced gene dysregulation were apparent, affecting gene classes associated with diverse biological processes. Comparison with HCV-induced transcriptional dysregulation in Huh-7.5 cells identified limited overlap between the two systems. Of note, in PHHs, HCV infection initiated broad upregulation of canonical interferon (IFN)-mediated defense programs, limiting viral RNA replication and abrogating virion release. We further find that constitutive expression of IRF1 in PHHs maintains a steady-state antiviral program in the absence of infection, which can additionally reduce HCV RNA translation and replication. We also detected infection-induced downregulation of ∼90 genes encoding components of the EIF2 translation initiation complex and ribosomal subunits in PHHs, consistent with a signature of translational shutoff. As HCV polyprotein translation occurs independently of the EIF2 complex, this process is likely pro-viral: only translation initiation of host transcripts is arrested. The combination of antiviral intrinsic and inducible immunity, balanced against pro-viral programs, including translational arrest, maintains HCV replication at a low-level in PHHs. This may ultimately keep HCV under the radar of extra-hepatocyte immune surveillance while initial infection is established, promoting tolerance, preventing clearance and facilitating progression to chronicity.IMPORTANCEAcute HCV infections are often asymptomatic and therefore frequently undiagnosed. We endeavored to recreate this understudied phase of HCV infection using explanted PHHs and monitored host responses to initial infection. We detected temporally distinct virus-induced perturbations in the transcriptional landscape, which were initially narrow but massively amplified in breadth and magnitude over time. At 72 hpi, we detected dysregulation of diverse gene programs, concurrently promoting both virus clearance and virus persistence. On the one hand, baseline expression of IRF1 combined with infection-induced upregulation of IFN-mediated effector genes suppresses virus propagation. On the other, we detect transcriptional signatures of host translational inhibition, which likely reduces processing of IFN-regulated gene transcripts and facilitates virus survival. Together, our data provide important insights into constitutive and virus-induced transcriptional programs in PHHs, and identifies simultaneous antagonistic dysregulation of pro-and anti-viral programs which may facilitate host tolerance and promote viral persistence.

3.
Sci Adv ; 6(45)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33148654

RESUMEN

Hepatitis C virus (HCV) has no animal reservoir, infecting only humans. To investigate species barrier determinants limiting infection of rodents, murine liver complementary DNA library screening was performed, identifying transmembrane proteins Cd302 and Cr1l as potent restrictors of HCV propagation. Combined ectopic expression in human hepatoma cells impeded HCV uptake and cooperatively mediated transcriptional dysregulation of a noncanonical program of immunity genes. Murine hepatocyte expression of both factors was constitutive and not interferon inducible, while differences in liver expression and the ability to restrict HCV were observed between the murine orthologs and their human counterparts. Genetic ablation of endogenous Cd302 expression in human HCV entry factor transgenic mice increased hepatocyte permissiveness for an adapted HCV strain and dysregulated expression of metabolic process and host defense genes. These findings highlight human-mouse differences in liver-intrinsic antiviral immunity and facilitate the development of next-generation murine models for preclinical testing of HCV vaccine candidates.


Asunto(s)
Hepacivirus , Hepatitis C , Animales , Hepacivirus/genética , Ratones , Ratones Transgénicos , Internalización del Virus
4.
Virus Evol ; 6(2): veaa033, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32704383

RESUMEN

The genealogy of the hepatitis C virus (HCV) and the genus Hepacivirus remains elusive despite numerous recently discovered animal hepaciviruses (HVs). Viruses from evolutionarily ancient mammals might elucidate the HV macro-evolutionary patterns. Here, we investigated sixty-seven two-toed and nine three-toed sloths from Costa Rica for HVs using molecular and serological tools. A novel sloth HV was detected by reverse transcription polymerase chain reaction (RT-PCR) in three-toed sloths (2/9, 22.2%; 95% confidence interval (CI), 5.3-55.7). Genomic characterization revealed typical HV features including overall polyprotein gene structure, a type 4 internal ribosomal entry site in the viral 5'-genome terminus, an A-U-rich region and X-tail structure in the viral 3'-genome terminus. Different from other animal HVs, HV seropositivity in two-toed sloths was low at 4.5 per cent (3/67; CI, 1.0-12.9), whereas the RT-PCR-positive three-toed sloths were seronegative. Limited cross-reactivity of the serological assay implied exposure of seropositive two-toed sloths to HVs of unknown origin and recent infections in RT-PCR-positive animals preceding seroconversion. Recent infections were consistent with only 9 nucleotide exchanges between the two sloth HVs, located predominantly within the E1/E2 encoding regions. Translated sequence distances of NS3 and NS5 proteins and host comparisons suggested that the sloth HV represents a novel HV species. Event- and sequence distance-based reconciliations of phylogenies of HVs and of their hosts revealed complex macro-evolutionary patterns, including both long-term evolutionary associations and host switches, most strikingly from rodents into sloths. Ancestral state reconstructions corroborated rodents as predominant sources of HV host switches during the genealogy of extant HVs. Sequence distance comparisons, partial conservation of critical amino acid residues associated with HV entry and selection pressure signatures of host genes encoding entry and antiviral protein orthologs were consistent with HV host switches between genetically divergent mammals, including the projected host switch from rodents into sloths. Structural comparison of HCV and sloth HV E2 proteins suggested conserved modes of hepaciviral entry. Our data corroborate complex macro-evolutionary patterns shaping the genus Hepacivirus, highlight that host switches are possible across highly diverse host taxa, and elucidate a prominent role of rodent hosts during the Hepacivirus genealogy.

5.
Vet Microbiol ; 242: 108575, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32122586

RESUMEN

Theiler's disease was confirmed within a group horses located on a farm in southwestern Ontario during the summer and autumn of 2005. Five sudden deaths occurred between 3 July and 21 August, 2005, none of which were necropsied, however two of the horses showed clinical signs compatible with hepatic encephalopathy prior to death. No horse on the farm had received a biologic product of equine blood origin in the preceding six months. The only biologics used on the property were the administration of killed vaccines for rabies, tetanus and West Nile Virus to all horses 30 days prior to the onset of the first sudden death. Between 22 August, 2005 and 21 October, 2005, a further four horses died suddenly or were euthanized with all having a confirmed histopathologic diagnosis of acute hepatic necrosis. Serum was collected from all horses on the farm on 30 September, 2005 and this was repeated on 29 October, 2005. Equine parvovirus-hepatitis (EqPV-H) DNA was detected by quantitative-PCR in the serum of 61.8% (34/55) of the horses on the farm on either one or both sampling dates with viral loads ranging from <3.75 × 103 copies/mL to 3.64 × 107 copies/mL. EqPV-H DNA was present in serum samples of three horses with a confirmed diagnosis of Theiler's disease, five horses with subclinical liver disease, and in clinically normal in-contact horses. Subsequent phylogenetic analysis based on partial NS1 of EqPV-H revealed not only high similarity on nucleotide level within the sequenced samples but also within other previously published sequences.


Asunto(s)
Anticuerpos Antivirales/sangre , ADN Viral/aislamiento & purificación , Virus de Hepatitis , Hepatitis Viral Animal/sangre , Enfermedades de los Caballos/virología , Parvovirus , Animales , Productos Biológicos , Granjas , Hepatitis Viral Animal/mortalidad , Enfermedades de los Caballos/sangre , Enfermedades de los Caballos/mortalidad , Caballos , Ontario , Filogenia , Carga Viral , Proteínas no Estructurales Virales/genética
6.
Viruses ; 11(11)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31683893

RESUMEN

Prevalence studies have demonstrated a global distribution of equine hepacivirus (EqHV), a member of the family Flaviviridae. However, apart from a single case of vertical transmission, natural routes of EqHV transmission remain elusive. Many known flaviviruses are horizontally transmitted between hematophagous arthropods and vertebrate hosts. This study represents the first investigation of potential EqHV transmission by mosquitoes. More than 5000 mosquitoes were collected across Austria and analyzed for EqHV ribonucleic acid (RNA) by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Concurrently, 386 serum samples from horses in eastern Austria were analyzed for EqHV-specific antibodies by luciferase immunoprecipitation system (LIPS) and for EqHV RNA by RT-qPCR. Additionally, liver-specific biochemistry parameters were compared between EqHV RNA-positive horses and EqHV RNA-negative horses. Phylogenetic analysis was conducted in comparison to previously published sequences from various origins. No EqHV RNA was detected in mosquito pools. Serum samples yielded an EqHV antibody prevalence of 45.9% (177/386) and RNA prevalence of 4.15% (16/386). EqHV RNA-positive horses had significantly higher glutamate dehydrogenase (GLDH) levels (p = 0.013) than control horses. Phylogenetic analysis showed high similarity between nucleotide sequences of EqHV in Austrian horses and EqHV circulating in other regions. Despite frequently detected evidence of EqHV infection in Austrian horses, no viral RNA was found in mosquitoes. It is therefore unlikely that mosquitoes are vectors of this flavivirus.


Asunto(s)
Culicidae/virología , Hepacivirus/aislamiento & purificación , Hepatitis C/veterinaria , Enfermedades de los Caballos/transmisión , Animales , Anticuerpos Antivirales/sangre , Austria/epidemiología , Femenino , Glutamato Deshidrogenasa/metabolismo , Hepacivirus/clasificación , Hepacivirus/genética , Hepacivirus/inmunología , Hepatitis C/epidemiología , Hepatitis C/transmisión , Hepatitis C/virología , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/virología , Caballos , Hígado/enzimología , Masculino , Filogenia , Prevalencia , ARN Viral/sangre , ARN Viral/genética
7.
Viruses ; 11(10)2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635426

RESUMEN

An equine parvovirus-hepatitis (EqPV-H) has been recently identified in association with equine serum hepatitis, also known as Theiler's disease. The disease was first described by Arnold Theiler in 1918 and is often observed with parenteral use of blood products in equines. However, natural ways of viral circulation and potential risk factors for transmission still remain unknown. In this study, we investigated the occurrence of EqPV-H infections in Thoroughbred horses in northern and western Germany and aimed to identify potential risk factors associated with viral infections. A total of 392 Thoroughbreds broodmares and stallions were evaluated cross-sectionally for the presence of anti-EqPV-H antibodies and EqPV-H DNA using a luciferase immunoprecipitation assay (LIPS) and a quantitative PCR, respectively. In addition, data regarding age, stud farm, breeding history, and international transportation history of each horse were collected and analysed. An occurrence of 7% EqPV-H DNA positive and 35% seropositive horses was observed in this study cohort. The systematic analysis of risk factors revealed that age, especially in the group of 11-15-year-old horses, and breeding history were potential risk factors that can influence the rate of EqPV-H infections. Subsequent phylogenetic analysis showed a high similarity on nucleotide level within the sequenced Thoroughbred samples. In conclusion, this study demonstrates circulating EqPV-H infections in Thoroughbred horses from central Europe and revealed age and breeding history as risk factors for EqPV-H infections.


Asunto(s)
Anticuerpos Antivirales/sangre , Enfermedades de los Caballos/epidemiología , Caballos/virología , Infecciones por Parvoviridae/veterinaria , Parvovirus/clasificación , Factores de Edad , Animales , Cruzamiento , Femenino , Alemania/epidemiología , Hepatitis Viral Animal/epidemiología , Hepatitis Viral Animal/virología , Enfermedades de los Caballos/virología , Masculino , Infecciones por Parvoviridae/epidemiología , Parvovirus/aislamiento & purificación , Filogenia , Prevalencia , Factores de Riesgo
8.
Viruses ; 11(10)2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627415

RESUMEN

Yellow fever virus (YFV) represents a re-emerging zoonotic pathogen, transmitted by mosquito vectors to humans from primate reservoirs. Sporadic outbreaks of YFV occur in endemic tropical regions, causing a viral hemorrhagic fever (VHF) associated with high mortality rates. Despite a highly effective vaccine, no antiviral treatments currently exist. Therefore, YFV represents a neglected tropical disease and is chronically understudied, with many aspects of YFV biology incompletely defined including host range, host-virus interactions and correlates of host immunity and pathogenicity. In this article, we review the current state of YFV research, focusing on the viral lifecycle, host responses to infection, species tropism and the success and associated limitations of the YFV-17D vaccine. In addition, we highlight the current lack of available treatments and use publicly available sequence and structural data to assess global patterns of YFV sequence diversity and identify potential drug targets. Finally, we discuss how technological advances, including real-time epidemiological monitoring of outbreaks using next-generation sequencing and CRISPR/Cas9 modification of vector species, could be utilized in future battles against this re-emerging pathogen which continues to cause devastating disease.


Asunto(s)
Interacciones Huésped-Patógeno , Mosquitos Vectores/virología , Primates/virología , Fiebre Amarilla/prevención & control , Virus de la Fiebre Amarilla/patogenicidad , Animales , Sistemas CRISPR-Cas , Brotes de Enfermedades/prevención & control , Humanos , Mosquitos Vectores/genética , Enfermedades Desatendidas/prevención & control , Enfermedades Desatendidas/virología , Tropismo Viral , Fiebre Amarilla/inmunología , Fiebre Amarilla/transmisión , Vacuna contra la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/inmunología
9.
Vet Med Sci ; 5(3): 372-378, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31267690

RESUMEN

BACKGROUND: Equine hepacivirus (EqHV) in equids represents the closest homologue to hepatitis C virus (HCV) infecting humans. A majority of HCV infected patients develop a chronic course of infection leading to liver fibrosis, cirrhosis and liver failure. However, in horses mostly transient mild subclinical infections are reported for EqHV to date. OBJECTIVES: EqHV can be involved in chronic liver diseases of horses. METHODS: Biochemical parameters in serum samples were measured. Viral load was determined using qPCR. Next generation sequencing (NGS) of serum was performed. Liver tissue was stained with haematoxylin and eosin and analysed for viral RNA with fluorescent in situ-hybridization. RESULTS: The horse showed symptoms of severe hepatopathy and was chronically infected with EqHV. Viral RNA was detectable in the liver during disease. To rule out other infectious agents NGS was performed and showed the highest abundance for EqHV. The identified virus sequence was similar to other circulating equine hepaciviruses. CONCLUSIONS: EqHV can be associated with liver disease in horses. Whether it causes the disease or contributes in a multifactorial manner needs further investigation.


Asunto(s)
Hepacivirus/aislamiento & purificación , Hepatitis C/veterinaria , Enfermedades de los Caballos/diagnóstico , Hepatopatías/veterinaria , Animales , Enfermedad Crónica/veterinaria , Hepatitis C/diagnóstico , Hepatitis C/virología , Enfermedades de los Caballos/virología , Caballos , Hepatopatías/diagnóstico , Hepatopatías/patología , Hepatopatías/virología , Masculino
10.
Viruses ; 11(5)2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117220

RESUMEN

An equine parvovirus-hepatitis (EqPV-H) has been recently identified in association with equine serum hepatitis, also known as Theiler's disease. This disease was first described by Arnold Theiler in 1918 and is often observed after applications with blood products in equines. So far, the virus has only been described in the USA and China. In this study, we evaluated the presence of EqPV-H in several commercial serum samples to assess the potential risk of virus transmission by equine serum-based products for medical and research applications. In 11 out of 18 commercial serum samples, EqPV-H DNA was detectable with a viral load up to 105 copies/mL. The same serum batches as well as three additional samples were also positive for antibodies against the EqPV-H VP1 protein. The countries of origin with detectable viral genomes included the USA, Canada, New Zealand, Italy, and Germany, suggesting a worldwide distribution of EqPV-H. Phylogenetic analysis of the EqPV-H NS1 sequence in commercial serum samples revealed high similarities in viral sequences from different geographical areas. As horse sera are commonly used for the production of anti-sera, which are included in human and veterinary medical products, these results implicate the requirement for diagnostic tests to prevent EqPV-H transmission.


Asunto(s)
Flaviviridae/fisiología , Hepatitis Viral Animal/diagnóstico , Hepatitis Viral Animal/virología , Enfermedades de los Caballos/diagnóstico , Enfermedades de los Caballos/virología , Infecciones por Parvoviridae/veterinaria , Pruebas Serológicas , Animales , Anticuerpos Antivirales/inmunología , Flaviviridae/clasificación , Genoma Viral , Geografía Médica , Hepatitis Viral Animal/epidemiología , Enfermedades de los Caballos/epidemiología , Caballos , Filogenia , Reacción en Cadena de la Polimerasa , Carga Viral , Virión
11.
Vet Microbiol ; 223: 51-58, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30173752

RESUMEN

Since the discovery of equine hepacivirus (EqHV) in 2011, the virus has been detected in horse populations from more than twelve countries across five continents. EqHV seroprevalence has been reported to be as high as 61.8% and EqHV ribonucleic acid (RNA) prevalence to range between 0.9% and 34.1%. Molecular and serological indications of EqHV infection have never been reported in equids on the African continent. Therefore, investigation of EqHV prevalence in South African horses and subsequent viral genetic characterization contribute to a better understanding of the global epidemiology of this virus. In a cross-sectional study, serum samples from 454 Thoroughbred foals (aged 58-183 days) were analysed for anti-EqHV non-structural protein 3 (NS3)-specific antibodies (abs) with a luciferase immunoprecipitation system (LIPS) and for EqHV RNA by quantitative real-time polymerase chain reaction (qRT-PCR). Farms of origin (n = 26) were situated in South Africa's Western Cape Province. The associations between EqHV infection state and farm of origin, foal gender and foal age were subsequently described. Furthermore, nested PCRs were performed on parts of the 5'UTR, NS3 and NS5B genes of 17 samples. Samples were sequenced and phylogenetic analyses were conducted. The population's seroprevalence was 83.70% and RNA was detected in 7.93% of samples. Increasing foal age was associated with decreasing ab prevalence and increasing prevalence of EqHV RNA. Sequences from South African EqHV strains did not show in-depth clustering with published sequences of EqHV isolates from particular continents. In conclusion, EqHV is present in the South African Thoroughbred population and appears more prevalent than reported in other horse populations worldwide.


Asunto(s)
Hepacivirus/aislamiento & purificación , Hepatitis C/veterinaria , Enfermedades de los Caballos/epidemiología , Animales , Estudios Transversales , Femenino , Hepacivirus/genética , Hepatitis C/epidemiología , Hepatitis C/virología , Enfermedades de los Caballos/virología , Caballos , Masculino , Filogenia , Prevalencia , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Estudios Seroepidemiológicos , Sudáfrica/epidemiología
12.
Vaccine ; 34(39): 4666-4671, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27523739

RESUMEN

Classical swine fever (CSF) is still one of the most important viral diseases of pigs worldwide and outbreaks are notifiable to the OIE. The different control options also include (emergency) vaccination, preferably with a vaccine that allows differentiation of infected from vaccinated animals (DIVA principle). Recently, the chimeric pestivirus "CP7_E2alf" (Suvaxyn® CSF Marker, Zoetis) was licensed as live attenuated marker vaccine by the European Medicines Agency (EMA). In the context of risk assessments for an emergency vaccination scenario, the question has been raised whether pre-existing anti-pestivirus antibodies, especially against the vaccine backbone Bovine viral diarrhea virus type 1 (BVDV-1), would interfere with "CP7_E2alf" vaccination and the accompanying DIVA diagnostics. To answer this question, a vaccination-challenge-trial was conducted with Suvaxyn® CSF Marker and the "gold-standard" of live-modified CSF vaccines C-strain (RIEMSER® Schweinepestvakzine) as comparator. Pre-existing antibodies against BVDV-1 were provoked in a subset of animals through intramuscular inoculation of a recent field isolate from Germany (two injections with an interval of 2weeks). Twenty-seven days after the first injection, intramuscular vaccination of pre-exposed and naïve animals with either "CP7_E2alf" or C-strain "Riems" was performed. Seven days later, all vaccinated animals and two additional controls were oro-nasally challenged with highly virulent CSF virus (CSFV) strain Koslov. It was demonstrated that pre-existing BVDV-1 antibodies do not impact on the efficacy of live attenuated vaccines against CSF. Both C-strain "Riems" and marker vaccine "CP7_E2alf" were able to confer full protection against highly virulent challenge seven days after vaccination. However, slight interference was seen with serological DIVA diagnostics accompanying the vaccination with CP7_E2alf. Amended sample preparation and combination of test systems was able to resolve most cases of false positive reactions. However, in such a co-infection scenario, optimization and embedding in a well-defined surveillance strategy is clearly needed.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas Bacterianas/inmunología , Peste Porcina Clásica/prevención & control , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Coinfección/inmunología , Virus de la Diarrea Viral Bovina Tipo 1 , Sus scrofa , Porcinos , Vacunas Atenuadas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...