Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer ; 22(1): 138, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596643

RESUMEN

The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Humanos , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Neoplasias/tratamiento farmacológico , Neoplasias/genética
2.
Biomedicines ; 11(4)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189799

RESUMEN

Although there is increasing evidence that oxidative stress and inflammation induced by COVID-19 may contribute to increased risk and severity of thromboses, the underlying mechanism(s) remain to be understood. The purpose of this review is to highlight the role of blood lipids in association with thrombosis events observed in COVID-19 patients. Among different types of phospholipases A2 that target cell membrane phospholipids, there is increasing focus on the inflammatory secretory phospholipase A2 IIA (sPLA2-IIA), which is associated with the severity of COVID-19. Analysis indicates increased sPLA2-IIA levels together with eicosanoids in the sera of COVID patients. sPLA2 could metabolise phospholipids in platelets, erythrocytes, and endothelial cells to produce arachidonic acid (ARA) and lysophospholipids. Arachidonic acid in platelets is metabolised to prostaglandin H2 and thromboxane A2, known for their pro-coagulation and vasoconstrictive properties. Lysophospholipids, such as lysophosphatidylcholine, could be metabolised by autotaxin (ATX) and further converted to lysophosphatidic acid (LPA). Increased ATX has been found in the serum of patients with COVID-19, and LPA has recently been found to induce NETosis, a clotting mechanism triggered by the release of extracellular fibres from neutrophils and a key feature of the COVID-19 hypercoagulable state. PLA2 could also catalyse the formation of platelet activating factor (PAF) from membrane ether phospholipids. Many of the above lipid mediators are increased in the blood of patients with COVID-19. Together, findings from analyses of blood lipids in COVID-19 patients suggest an important role for metabolites of sPLA2-IIA in COVID-19-associated coagulopathy (CAC).

3.
Nat Commun ; 10(1): 1391, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30918264

RESUMEN

Achieving efficient photon upconversion under low irradiance is not only a fundamental challenge but also central to numerous advanced applications spanning from photovoltaics to biophotonics. However, to date, almost all approaches for upconversion luminescence intensification require stringent controls over numerous factors such as composition and size of nanophosphors. Here, we report the utilization of dielectric microbeads to significantly enhance the photon upconversion processes in lanthanide-doped nanocrystals. By modulating the wavefront of both excitation and emission fields through dielectric superlensing effects, luminescence amplification up to 5 orders of magnitude can be achieved. This design delineates a general strategy to converge a low-power incident light beam into a photonic hotspot of high field intensity, while simultaneously enabling collimation of highly divergent emission for far-field accumulation. The dielectric superlensing-mediated strategy may provide a major step forward in facilitating photon upconversion processes toward practical applications in the fields of photobiology, energy conversion, and optogenetics.

4.
IEEE Trans Nanobioscience ; 18(2): 226-229, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30892222

RESUMEN

Ability to direct neuronal growth not only carries great potential for treating neural conditions-for example, bridging traumatically shattered connections-but would also be an exquisite tool for bionic applications that require a physical interface between neurons and electronics. A testing platform is needed to better understand axonal guidance in the context of a specific in vivo application. Versatility of 3D printing technology allows tailoring to researcher needs, both in vitro and in vivo. In this paper, we establish a fibro-neuronal co-culture inspired by our neural interface research and demonstrate axon alignment on a textured substrate fabricated with a common, versatile 3D-printing set-up.


Asunto(s)
Orientación del Axón , Técnicas de Cocultivo , Animales , Ganglios Espinales/citología , Ratones , Células 3T3 NIH , Neuronas/fisiología , Impresión Tridimensional , Ratas
5.
Nature ; 561(7721): 88-93, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30150772

RESUMEN

The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1-3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination.

6.
Dev Growth Differ ; 56(8): 583-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25283796

RESUMEN

In the adult hippocampus, new neurons are continuously generated and incorporated into the local circuitry in a manner dependent on the network activity. Depolarization evoked by neurotransmitters has been assumed to activate L-type Ca2+ channels (LTCC) which regulate the intracellular Ca2+ -dependent signaling cascades. The process of neurogenesis contains several stages such as proliferation, fate determination, selective death/survival and maturation. Here, we investigated which stage of neurogenesis is under the regulation of LTCC using a clonal line of neural stem/progenitor cells, PZ5, which was derived from adult rat hippocampus. Although undifferentiated PZ5 cells were type 1-like cells expressing both nestin and glial fibrillary acidic protein, they generated neuronal, astrocytic and oligodendrocytic populations in differentiation medium containing retinoic acid. Proliferation of undifferentiated PZ5 cells was dependent on neither the LTCC antagonist, nimodipine (Nimo) nor the LTCC agonists, Bay K 8644 (BayK) or FPL 64176 (FPL), whereas the fraction of neuronal population that expressed both ßIII-tubulin and MAP2 was reduced by Nimo but increased by BayK or FPL. At an earlier period of differentiation (e.g., day 4), the fraction of PZ5 cells expressing HuC/D, pan-neuronal marker, was not affected either by the LTCC activation or inhibition. At a later period of differentiation (e.g., day 9), the fraction of dying neurons was decreased by LTCC activation and increased by LTCC inhibition. It is suggested that the LTCC activation facilitates the survival and maturation of immature neurons, and that its inhibition facilitates the neuronal death.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Canales de Calcio Tipo L/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas/citología , Animales , Células Cultivadas , Neuronas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...