Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 16(9): 13750-13760, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36036908

RESUMEN

We design an optically resonant bulk heterojunction solar cell to study optoelectronic properties of nanostructured p-n junctions. The nanostructures yield strong light-matter interaction as well as distinct charge-carrier extraction behavior, which together improve the overall power conversion efficiency. We demonstrate high-resolution substrate conformal soft-imprint lithography technology in combination with state-of-the art ZnO nanoparticles to create a nanohole template in an electron transport layer. The nanoholes are infiltrated with PbS quantum dots (QDs) to form a nanopatterned depleted heterojunction. Optical simulations show that the absorption per unit volume in the cylindrical QD absorber layer is enhanced by 19.5% compared to a planar reference. This is achieved for a square array of QD nanopillars of 330 nm height and 320 nm diameter, with a pitch of 500 nm on top of a residual QD layer of 70 nm, surrounded by ZnO. Electronic simulations show that the patterning results in a current gain of 3.2 mA/cm2 and a slight gain in voltage, yielding an efficiency gain of 0.4%. Our simulations further show that the fill factor is highly sensitive to the patterned structure. This is explained by the electric field strength varying strongly across the patterned absorber. We outline a path toward further optimized optically resonant nanopattern geometries with enhanced carrier collection properties. We demonstrate a 0.74 mA/cm2 current gain for a patterned cell compared to a planar cell in experiments, owing to a much improved infrared response, as predicted by our simulations.

2.
ACS Appl Mater Interfaces ; 13(24): 28679-28688, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34101423

RESUMEN

Quantum dots (QDs) have a wide range of applications in the field of optoelectronics. They have been playing multiple roles within the configuration of a device, by serving as the building blocks for both the active layer and the carrier transport layer. While the performance of various optoelectronic devices has been steadily improving via developments in passivating the QD active layer, the possible improvement via passivation of the QD-based carrier transport layer has been largely overlooked. Here, with lead sulfide QD photovoltaics as the platform of study, we demonstrate that the device performance can be significantly improved by passivating the QD hole transport layer (HTL) with zinc salt post-treatments. The power conversion efficiency is improved from 8.7% of the reference device to 10.2% and 9.5% for devices with zinc acetate (ZnAc)- and zinc iodide (ZnI2)-treated HTLs, respectively. Transient absorption spectroscopy confirms that both treatments effectively reduce band-tail states and increase carrier lifetime of the HTLs. Further elemental analysis shows that ZnAc provides a higher amount of Zn2+ for passivation while maintaining the function of HTL by allowing essential p-doping oxidation. In contrast, the additional I- passivation from ZnI2 inhibits p-doping oxidation and limits the function of HTL. This work demonstrates the potential of improving device performance by passivating the QD-based HTLs, and the method developed is likely applicable to other optoelectronic devices.

3.
ACS Omega ; 6(16): 10790-10800, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-34056233

RESUMEN

Breakdown and utilization of cellulose are critical for the bioenergy sector; however, current cellulose-to-energy conversion schemes often consume large quantities of unrecoverable chemicals, or are expensive, due to the need for enzymes or high temperatures. In this paper, we demonstrate a new method for converting cellulose into soluble compounds using a mixture of Fe2+ and Fe3+ as catalytic centers for the breakdown, yielding Fe3O4 nanoparticles during the hydrothermal process. Iron precursors transformed more than 61% of microcrystalline cellulose into solutes, with the composition of the solute changing with the initial Fe3+ concentration. The primary products of the breakdown of cellulose were a range of aldaric acids with different molecular weights. The nanoparticles have concentration-dependent tuneable sizes between 6.7 and 15.8 nm in diameter. The production of value-added nanomaterials at low temperatures improves upon the economics of traditional cellulose-to-energy conversion schemes with the precursor value increasing rather than deteriorating over time.

4.
ACS Appl Mater Interfaces ; 12(20): 22751-22759, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32347092

RESUMEN

PbS quantum dot solar cells (QDSCs) have emerged as a promising low-cost, solution-processable solar energy harvesting device and demonstrated good air stability and potential for large-scale commercial implementation. PbS QDSCs achieved a record certified efficiency of 12% in 2018 by utilizing an n+-n-p device structure. However, the p-type layer has generally suffered from low carrier mobility due to the organic ligand 1,2-ethanedithiol (EDT) that is used to modify the quantum dot (QD) surface. The low carrier mobility of EDT naturally limits the device thickness as the carrier diffusion length is limited by the low mobility. Herein, we improve the properties of the p-type layer through a two-step hybrid organic ligand treatment. By treating the p-type layer with two types of ligands, 3-mercaptopropionic acid (MPA) and EDT, the PbS QD surface was passivated by a combination of the two ligands, resulting in an overall improvement in open-circuit voltage, fill factor, and current density, leading to an improvement in the cell efficiency from 7.0 to 10.4% for the champion device. This achievement was a result of the improved QD passivation and a reduction in the interdot distance, improving charge transport through the p-type PbS quantum dot film.

5.
J Phys Chem Lett ; 10(19): 5729-5734, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31510742

RESUMEN

Colloidal quantum dot solids are attractive candidates for tandem solar cells because of their widely tunable bandgaps. However, the development of the quantum dot tandem solar cell has lagged far behind that of its single-junction counterpart. One of the fundamental problems with colloidal quantum dot solar cells is the relatively small diffusion length, which limits the quantum dot absorbing layer thickness and hence the power conversion efficiency. In this research, guided by optical modeling and utilizing a graded band alignment strategy, a two-terminal monolithic solution-processed quantum dot tandem solar cell has been successfully fabricated and a power conversion efficiency of 6.8% has been achieved. The band grading approach utilized the complementary tuning of work functions and band alignment through judicious choices of the nanoparticle surface chemistry and quantum dot confined size. This work demonstrates a general approach to improving the efficiency for tandem thin-film solar cells.

6.
Nanotechnology ; 30(8): 085403, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30248023

RESUMEN

The unique tunable bandgaps and straightforward synthesis of colloidal quantum dots make them promising low-cost materials for photovoltaics. High-performance colloidal quantum dot solar cells rely on good-quality electron transporting layers (ETLs) to make carrier selective contacts. Despite extensive use of n-type oxides as ETLs, a detailed understanding of their surface and interface states as well as mechanisms to improve their optical properties are still under development. Here, we report a simple procedure to produce MgCl2 passivated ZnO nanoparticles ETLs that show improved device performance. The MgCl2 treated ZnO electron transporting layers boost the PbS colloidal quantum dot cell efficiency from 6.3% to 8.2%. The cell exhibits reduced defects leading to significant improvements of both FF and J sc. This low-temperature MgCl2 treated ZnO electron transporting layer may be applied in solution processed tandem cells as a promising strategy to further increase cell efficiencies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA