Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 154: 113640, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36081286

RESUMEN

Atherosclerosis, the leading cause of cardiovascular disease responsible for the majority of deaths worldwide, cannot be sufficiently explained by established risk factors, including hypercholesterolemia. Elevated plasma homocysteine is an independent risk factor for atherosclerosis and is strongly linked to cardiovascular mortality. However, the role of homocysteine in atherosclerosis is still insufficiently understood. Previous research in this area has been also hampered by the lack of reproducible in vivo models of atherosclerosis that resemble the human situation. Here, we have developed and applied an automated system for vessel wall injury that leads to more homogenous damage and more pronounced atherosclerotic plaque development, even at low balloon pressure. Our automated system helped to glean vital details of cholesterol-independent changes in the aortic wall of balloon-injured rabbits. We show that deficiency of B vitamins, which are required for homocysteine degradation, leads to atherogenic transformation of the aorta resulting in accumulation of macrophages and lipids, impairment of its biomechanical properties and disorganization of aortic collagen/elastin in the absence of hypercholesterolemia. A combination of B vitamin deficiency and hypercholesterolemia leads to thickening of the aorta, decreased aortic water diffusion, increased LDL-cholesterol and impaired vascular reactivity compared to any single condition. Our findings suggest that deficiency of B vitamins leads to atherogenic transformation of the aorta even in the absence of hypercholesterolemia and aggravates atherosclerosis development in its presence.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Hiperlipidemias , Complejo Vitamínico B , Animales , Aorta/metabolismo , Aterosclerosis/metabolismo , Colesterol , Dieta Aterogénica , Homocisteína/metabolismo , Humanos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Conejos
2.
J Biol Chem ; 293(15): 5544-5555, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29414770

RESUMEN

S-Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S-adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition.


Asunto(s)
Adenosilhomocisteinasa/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , S-Adenosilhomocisteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosilhomocisteinasa/genética , Ácidos Grasos/genética , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/metabolismo , Modelos Biológicos , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Cell Biochem ; 399(1-2): 27-37, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25280400

RESUMEN

Pathophysiology of polyunsaturated fatty acids (PUFAs) is associated with aberrant lipid and oxygen metabolism. In particular, under oxidative stress, PUFAs are prone to autocatalytic degradation via peroxidation, leading to formation of reactive aldehydes with numerous potentially harmful effects. However, the pathological and compensatory mechanisms induced by lipid peroxidation are very complex and not sufficiently understood. In our study, we have used yeast capable of endogenous PUFA synthesis in order to understand the effects triggered by PUFA accumulation on cellular physiology of a eukaryotic organism. The mechanisms induced by PUFA accumulation in S. cerevisiae expressing Hevea brasiliensis Δ12-fatty acid desaturase include down-regulation of components of electron transport chain in mitochondria as well as up-regulation of pentose-phosphate pathway and fatty acid ß-oxidation at the transcriptional level. Interestingly, while no changes were observed at the transcriptional level, activities of two important enzymatic antioxidants, catalase and glutathione-S-transferase, were altered in response to PUFA accumulation. Increased intracellular glutathione levels further suggest an endogenous oxidative stress and activation of antioxidative defense mechanisms under conditions of PUFA accumulation. Finally, our data suggest that PUFA in cell membrane causes metabolic changes which in turn lead to adaptation to endogenous oxidative stress.


Asunto(s)
Ácidos Grasos Insaturados/fisiología , Saccharomyces cerevisiae/metabolismo , Adaptación Fisiológica , Catalasa/metabolismo , Ácido Graso Desaturasas/biosíntesis , Ácido Graso Desaturasas/genética , Hevea/enzimología , Peroxidación de Lípido , Estrés Oxidativo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma
4.
Dev Cell ; 29(6): 729-39, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24960695

RESUMEN

Membrane phospholipids typically contain fatty acids (FAs) of 16 and 18 carbon atoms. This particular chain length is evolutionarily highly conserved and presumably provides maximum stability and dynamic properties to biological membranes in response to nutritional or environmental cues. Here, we show that the relative proportion of C16 versus C18 FAs is regulated by the activity of acetyl-CoA carboxylase (Acc1), the first and rate-limiting enzyme of FA de novo synthesis. Acc1 activity is attenuated by AMPK/Snf1-dependent phosphorylation, which is required to maintain an appropriate acyl-chain length distribution. Moreover, we find that the transcriptional repressor Opi1 preferentially binds to C16 over C18 phosphatidic acid (PA) species: thus, C16-chain containing PA sequesters Opi1 more effectively to the ER, enabling AMPK/Snf1 control of PA acyl-chain length to determine the degree of derepression of Opi1 target genes. These findings reveal an unexpected regulatory link between the major energy-sensing kinase, membrane lipid composition, and transcription.


Asunto(s)
Acetiltransferasas/metabolismo , Ácidos Grasos/metabolismo , Regulación Fúngica de la Expresión Génica , Lípidos de la Membrana/metabolismo , Mio-Inositol-1-Fosfato Sintasa/genética , Fosfolípidos/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Acetiltransferasas/genética , Retículo Endoplásmico/metabolismo , Mutación/genética , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Biochim Biophys Acta ; 1832(1): 204-15, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23017368

RESUMEN

S-adenosyl-L-methionine (AdoMet)-dependent methylation is central to the regulation of many biological processes: more than 50 AdoMet-dependent methyltransferases methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids. Common to all AdoMet-dependent methyltransferase reactions is the release of the strong product inhibitor S-adenosyl-L-homocysteine (AdoHcy), as a by-product of the reaction. S-adenosyl-L-homocysteine hydrolase is the only eukaryotic enzyme capable of reversible AdoHcy hydrolysis to adenosine and homocysteine and, thus, relief from AdoHcy inhibition. Impaired S-adenosyl-L-homocysteine hydrolase activity in humans results in AdoHcy accumulation and severe pathological consequences. Hyperhomocysteinemia, which is characterized by elevated levels of homocysteine in blood, also exhibits a similar phenotype of AdoHcy accumulation due to the reversal of the direction of the S-adenosyl-L-homocysteine hydrolase reaction. Inhibition of S-adenosyl-L-homocysteine hydrolase is also linked to antiviral effects. In this review the advantages of yeast as an experimental system to understand pathologies associated with AdoHcy accumulation will be discussed.


Asunto(s)
Adenosilhomocisteinasa/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosilhomocisteinasa/genética , Animales , Humanos , Metilación , Modelos Biológicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
J Lipids ; 2011: 702853, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21837278

RESUMEN

Homocysteine (Hcy) has been recognized for the past five decades as a risk factor for atherosclerosis. However, the role of Hcy in the pathological changes associated with atherosclerosis as well as the pathological mechanisms triggered by Hcy accumulation is poorly understood. Due to the reversal of the physiological direction of the reaction catalyzed by S-adenosyl-L-homocysteine hydrolase Hcy accumulation leads to the synthesis of S-adenosyl-L-homocysteine (AdoHcy). AdoHcy is a strong product inhibitor of S-adenosyl-L-methionine (AdoMet)-dependent methyltransferases, and to date more than 50 AdoMet-dependent methyltransferases that methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids have been identified. Phospholipid methylation is the major consumer of AdoMet, both in mammals and in yeast. AdoHcy accumulation induced either by Hcy supplementation or due to S-adenosyl-L-homocysteine hydrolase deficiency results in inhibition of phospholipid methylation in yeast. Moreover, yeast cells accumulating AdoHcy also massively accumulate triacylglycerols (TAG). Similarly, Hcy supplementation was shown to lead to increased TAG and sterol synthesis as well as to the induction of the unfolded protein response (UPR) in mammalian cells. In this review a model of deregulation of lipid metabolism in response to accumulation of AdoHcy in Hcy-associated pathology is proposed.

7.
J Biol Chem ; 283(35): 23989-99, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18591246

RESUMEN

In eukaryotes, S-adenosyl-L-homocysteine hydrolase (Sah1) offers a single way for degradation of S-adenosyl-L-homocysteine, a product and potent competitive inhibitor of S-adenosyl-L-methionine (AdoMet)-dependent methyltransferases. De novo phosphatidylcholine (PC) synthesis requires three AdoMet-dependent methylation steps. Here we show that down-regulation of SAH1 expression in yeast leads to accumulation of S-adenosyl-L-homocysteine and decreased de novo PC synthesis in vivo. This decrease is accompanied by an increase in triacylglycerol (TG) levels, demonstrating that Sah1-regulated methylation has a major impact on cellular lipid homeostasis. TG accumulation is also observed in cho2 and opi3 mutants defective in methylation of phosphatidylethanolamine to PC, confirming that PC de novo synthesis and TG synthesis are metabolically coupled through the efficiency of the phospholipid methylation reaction. Indeed, because both types of lipids share phosphatidic acid as a precursor, we find in cells with down-regulated Sah1 activity major alterations in the expression of the INO1 gene as well as in the localization of Opi1, a negative regulatory factor of phospholipid synthesis, which binds and is retained in the endoplasmic reticulum membrane by phosphatidic acid in conjunction with VAMP/synaptobrevin-associated protein, Scs2. The addition of homocysteine, by the reversal of the Sah1-catalyzed reaction, also leads to TG accumulation in yeast, providing an attractive model for the role of homocysteine as a risk factor of atherosclerosis in humans.


Asunto(s)
Adenosilhomocisteinasa/biosíntesis , Aterosclerosis/enzimología , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Fosfatidilcolinas/biosíntesis , Saccharomyces cerevisiae/enzimología , Triglicéridos/biosíntesis , Adenosilhomocisteinasa/genética , Aterosclerosis/genética , Regulación hacia Abajo/genética , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Regulación Enzimológica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/genética , Homeostasis/genética , Homocisteína/genética , Homocisteína/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metilación , Mio-Inositol-1-Fosfato Sintasa/biosíntesis , Mio-Inositol-1-Fosfato Sintasa/genética , Fosfatidilcolinas/genética , Fosfatidiletanolamina N-Metiltransferasa/biosíntesis , Fosfatidiletanolamina N-Metiltransferasa/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Factores de Riesgo , S-Adenosilhomocisteína/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Triglicéridos/genética
8.
Biochim Biophys Acta ; 1781(6-7): 283-7, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18452720

RESUMEN

To create a conditional system for molecular analysis of effects of polyunsaturated fatty acids (PUFA) on cellular physiology, we have constructed a strain of yeast (Saccharomyces cerevisiae) that functionally expresses, under defined conditions, the Delta12 desaturase gene from the tropical rubber tree, Hevea brasiliensis. This strain produces up to 15% PUFA, exclusively under inducing conditions resulting in production of 4-hydroxy-2-nonenal, one of the major end products of n-6 polyunsaturated fatty acid peroxidation. The PUFA-producing yeast was initially more sensitive to oxidative stress than the wild-type strain. However, over extended time of cultivation it became more resistant to hydrogen peroxide indicating adaptation to endogenous oxidative stress caused by the presence of PUFA. Indeed, PUFA-producing strain showed an increased concentration of endogenous ROS, while initially increased hydrogen peroxide sensitivity was followed by an increase in catalase activity and adaptation to oxidative stress. The deletion mutants constructed to be defective in the catalase activity lost the ability to adapt to oxidative stress. These data demonstrate that the cellular synthesis of PUFA induces endogenous oxidative stress which is overcome by cellular adaptation based on the catalase activity.


Asunto(s)
Adaptación Fisiológica , Ácidos Grasos Insaturados/farmacología , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Catalasa/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología
9.
Biochim Biophys Acta ; 1771(3): 255-70, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16950653

RESUMEN

Fatty acids are essential compounds in the cell. Since the yeast Saccharomyces cerevisiae does not feed typically on fatty acids, cellular function and growth relies on endogenous synthesis. Since all cellular organelles are involved in--or dependent on--fatty acid synthesis, multiple levels of control may exist to ensure proper fatty acid composition and homeostasis. In this review, we summarize what is currently known about enzymes involved in cellular fatty acid synthesis and elongation, and discuss potential links between fatty acid metabolism, physiology and cellular regulation.


Asunto(s)
Ácidos Grasos/biosíntesis , Saccharomyces cerevisiae/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Coenzimas/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Ácido Graso Sintasas/metabolismo , Mitocondrias/enzimología , Mitocondrias/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Free Radic Biol Med ; 40(5): 897-906, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16520241

RESUMEN

Although oxygen is essential for aerobic organisms, it also forms potentially harmful reactive oxygen species. For its simplicity, easy manipulation, and cultivation conditions, yeast is used as an attractive model in oxidative stress research. However, lack of polyunsaturated fatty acids in yeast membranes makes yeast unsuitable for research in the field of lipid peroxidation. Therefore, we have constructed a yeast strain expressing a Delta12 desaturase gene from the tropical rubber tree, Hevea brasiliensis. This yeast strain expresses the heterologous desaturase in an active form and, consequently, produces Delta9/Delta12 polyunsaturated fatty acids under inducing conditions. The functional expression of the heterologous desaturase did not affect cellular morphology or growth, indicating no general adverse effect on cellular physiology. However, the presence of polyunsaturated fatty acids changed the yeast's sensitivity to oxidative stress induced by addition of paraquat, tert-butylhydroperoxide, and hydrogen peroxide. This difference in sensitivity to the latter was followed by the formation of 4-hydroxy-2-nonenal, one of the end products of linoleic fatty acid peroxidation, which is known to play a role in cell growth control and signaling. Here we show that this yeast strain conditionally expressing the Delta12 desaturase gene provides a novel and well-defined eukaryotic model in lipid peroxidation research. Its potential to investigate the molecular basis of responses to oxidative stress, in particular the involvement of reactive aldehydes derived from fatty acid peroxidation, especially 4-hydroxy-2-nonenal, will be addressed.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Peroxidación de Lípido , Estrés Oxidativo , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Aldehídos/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Ácido Graso Desaturasas/genética , Radicales Libres/toxicidad , Hevea/enzimología , Hevea/genética , Peróxido de Hidrógeno/toxicidad , Datos de Secuencia Molecular , Paraquat/toxicidad , Proteínas de Plantas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , terc-Butilhidroperóxido/toxicidad
11.
FEBS Lett ; 577(3): 501-6, 2004 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-15556636

RESUMEN

S-adenosyl-L-homocysteine hydrolase (Sah1p, EC 3.3.1.1.) is a key enzyme of methylation metabolism. It catabolizes S-adenosyl-L-homocysteine, which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor, and which acts as strong competitive inhibitor of all AdoMet-dependent methyltransferases. Sah1p is an essential enzyme in yeast and one of the most highly conserved proteins with up to 80% sequence homology throughout all kingdoms of life. SAH1 expression in yeast is subject to the general transcriptional control of phospholipid synthesis. Profound changes in cellular lipid composition upon depletion of Sah1p support the notion of a tight interaction between lipid metabolism and Sah1p function.


Asunto(s)
Hidrolasas/metabolismo , Fosfolípidos/biosíntesis , S-Adenosilhomocisteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Secuencia de Consenso , Secuencia Conservada , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Marcadores Genéticos , Metilación , Modelos Biológicos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , S-Adenosilhomocisteína/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...