Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 142(Pt A): 113048, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39236459

RESUMEN

Glioblastoma multiforme (GBM) patients have a high recurrence rate of 90%, and the 5-year survival rate is only about 5%. Cytosine deaminase (CDA)/5-fluorocytosine (5-FC) gene therapy is a promising glioma treatment as 5-FC can cross the blood-brain barrier (BBB), while 5-fluorouracil (5-FU) cannot. Furthermore, 5-FU can assist reversing the immunological status of cold solid tumors. This study developed mesenchymal stem cells (MSCs) co-expressing yeast CDA and the secretory IL18-FC superkine to prevent recurrent tumor progression by simultaneously exerting cytotoxic effects and enhancing immune responses. IL18 was fused with Igk and IgG2a FC domains to enhance its secretion and serum half-life. The study confirmed the expression and activity of the CDA enzyme, as well as the expression, secretion, and activity of secretory IL18 and IL18-FC superkine, which were expressed by lentiviruses transduced-MSCs. In the transwell tumor-tropism assay, it was observed that the genetically modified MSCs retained their selective tumor-tropism ability following transduction. CDA-expressing MSCs, in the presence of 5-FC (200 µg/ml), induced cell cycle arrest and apoptosis in glioma cells through bystander effects in an indirect transwell co-culture system. They reduced the viability of the direct co-culture system when they constituted only 12.5 % of the cell population. The effectiveness of engineered MSCs in suppressing tumor progression was assessed by intracerebral administration of a lethal dose of GL261 cells combined in a ratio of 1:1 with MSCs expressing CDA, or CDA and sIL18, or CDA and sIL18-FC, into C57BL/6 mice. PET scan showed no conspicuous tumor mass in the MSC-CDA-sIL18-FC group that received 5-FC treatment. The pathological analysis showed that tumor progression suppressed in this group until 20th day after cell inoculation. Cytokine assessment showed that both interferon-gamma (IFN-γ) and interleukin-4 (IL-4) increased in the serum of MSC-CDA-sIL18 and MSC-CDA-sIL18-FC, treated with normal saline (NS) compared to those of the control group. The MSC-CDA-sIL18-FC group that received 5-FC treatment showed reduced serum levels of IL-6 and a considerably improved survival rate compared to the control group. Therefore, MSCs co-expressing yeast CDA and secretory IL18-FC, with tumor tropism capability, may serve as a supplementary approach to standard GBM treatment to effectively inhibit tumor progression and prevent recurrence.

2.
Cytokine Growth Factor Rev ; 76: 30-47, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38341337

RESUMEN

Mesenchymal stem cells (MSCs) have been extensively used in various therapeutic applications over the last two decades, particularly in regenerative medicine and cancer treatment. MSCs have the ability to differentiate into mesodermal and non-mesodermal lineages, which makes them a popular choice in tissue engineering and regenerative medicine. Studies have shown that MSCs have inherent tumor-suppressive properties and can affect the behavior of multiple cells contributing to tumor development. Additionally, MSCs possess a tumor tropism property and have a hypoimmune nature. The intrinsic features of MSCs along with their potential to undergo genetic manipulation and be loaded with various anticancer therapeutics have motivated researchers to use them in different cancer therapy approaches without considering their complex dynamic biological aspects. However, despite their desirable features, several reports have shown that MSCs possess tumor-supportive properties. These contradictory results signify the sophisticated nature of MSCs and warn against the potential therapeutic applications of MSCs. Therefore, researchers should meticulously consider the biological properties of MSCs in preclinical and clinical studies to avoid any undesirable outcomes. This manuscript reviews preclinical studies on MSCs and cancer from the last two decades, discusses how MSC properties affect tumor progression and explains the mechanisms behind tumor suppressive and supportive functions. It also highlights critical cellular pathways that could be targeted in future studies to improve the safety and effectiveness of MSC-based therapies for cancer treatment. The insights obtained from this study will pave the way for further clinical research on MSCs and development of more effective cancer treatments.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Neoplasias , Humanos , Medicina Regenerativa/métodos , Neoplasias/metabolismo , Transducción de Señal
3.
Med Res Rev ; 44(4): 1596-1661, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38299924

RESUMEN

Targeting actionable mutations in oncogene-driven cancers and the evolution of immuno-oncology are the two prominent revolutions that have influenced cancer treatment paradigms and caused the emergence of precision oncology. However, intertumoral and intratumoral heterogeneity are the main challenges in both fields of precision cancer treatment. In other words, finding a universal marker or pathway in patients suffering from a particular type of cancer is challenging. Therefore, targeting a single hallmark or pathway with a single targeted therapeutic will not be efficient for fighting against tumor heterogeneity. Mesenchymal stem cells (MSCs) possess favorable characteristics for cellular therapy, including their hypoimmune nature, inherent tumor-tropism property, straightforward isolation, and multilineage differentiation potential. MSCs can be loaded with various chemotherapeutics and oncolytic viruses. The combination of these intrinsic features with the possibility of genetic manipulation makes them a versatile tumor delivery vehicle that can be used for in vivo selective tumor delivery of various chemotherapeutic and biological therapeutics. MSCs can be used as biofactory for the local production of chemical or biological anticancer agents at the tumor site. MSC-mediated immunotherapy could facilitate the sustained release of immunotherapeutic agents specifically at the tumor site, and allow for the achievement of therapeutic concentrations without the need for repetitive systemic administration of high therapeutic doses. Despite the enthusiasm evoked by preclinical studies that used MSC in various cancer therapy approaches, the translation of MSCs into clinical applications has faced serious challenges. This manuscript, with a critical viewpoint, reviewed the preclinical and clinical studies that have evaluated MSCs as a selective tumor delivery tool in various cancer therapy approaches, including gene therapy, immunotherapy, and chemotherapy. Then, the novel nanotechnology and bioengineering approaches that can improve the potency of MSC for tumor targeting and overcoming challenges related to their low localization at the tumor sites are discussed.


Asunto(s)
Bioingeniería , Células Madre Mesenquimatosas , Nanotecnología , Neoplasias , Humanos , Células Madre Mesenquimatosas/citología , Animales , Neoplasias/terapia , Nanotecnología/métodos , Sistemas de Liberación de Medicamentos , Inmunoterapia , Trasplante de Células Madre Mesenquimatosas/métodos
4.
Cytokine Growth Factor Rev ; 75: 65-80, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37813764

RESUMEN

Cytokines are the first modern immunotherapeutic agents used for activation immunotherapy. Interleukin-18 (IL-18) has emerged as a potent anticancer immunostimulatory cytokine over the past three decades. IL-18, structurally is a stable protein with very low toxicity at biological doses. IL-18 promotes the process of antigen presentation and also enhances innate and acquired immune responses. It can induce the production of proinflammatory cytokines and increase tumor infiltration of effector immune cells to revert the immunosuppressive milieu of tumors. Furthermore, IL-18 can reduce tumorigenesis, suppress tumor angiogenesis, and induce tumor cell apoptosis. These characteristics present IL-18 as a promising option for cancer immunotherapy. Although several preclinical studies have reported the immunotherapeutic potential of IL-18, clinical trials using it as a monotherapy agent have reported disappointing results. These results may be due to some biological characteristics of IL-18. Several bioengineering approaches have been successfully used to correct its defects as a bioadjuvant. Currently, the challenge with this anticancer immunotherapeutic agent is mainly how to use its capabilities in a rational combinatorial therapy for clinical applications. The present study discussed the strengths and weaknesses of IL-18 as an immunotherapeutic agent, followed by comprehensive review of various promising bioengineering approaches that have been used to overcome its disadvantages. Finally, this study highlights the promising application of IL-18 in modern combinatorial therapies, such as chemotherapy, immune checkpoint blockade therapy, cell-based immunotherapy and cancer vaccines to guide future studies, circumventing the barriers to administration of IL-18 for clinical applications, and bring it to fruition as a potent immunotherapy agent in cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Interleucina-18/uso terapéutico , Inmunoterapia/métodos , Neoplasias/terapia , Citocinas , Bioingeniería , Interleucina-2
5.
Cytotechnology ; 70(1): 103-117, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28573544

RESUMEN

Acute kidney injury (AKI) is one of the most common health-threatening diseases in the world. There is still no effective medical treatment for AKI. Recently, Mesenchymal stem cell (MSC)-based therapy has been proposed for treatment of AKI. However, the microenvironment of damaged kidney tissue is not favorable for survival of MSCs which would be used for therapeutic intervention. In this study, we genetically manipulated MSCs to up-regulate lipocalin-2 (Lcn2) and investigated whether the engineered MSCs (MSC-Lcn2) could improve cisplatin-induced AKI in a rat model. Our results revealed that up-regulation of Lcn2 in MSCs efficiently enhanced renal function. MSC Lcn2 up-regulates expression of HGF, IGF, FGF and VEGF growth factors. In addition, they reduced molecular biomarkers of kidney injury such as KIM-1 and Cystatin C, while increased the markers of proximal tubular epithelium such as AQP-1 and CK18 following cisplatin-induced AKI. Overall, here we over-expressed Lcn2, a well-known cytoprotective factor against acute ischemic renal injury, in MSCs. This not only potentiated beneficial roles of MSCs for cell therapy purposes but also suggested a new modality for treatment of AKI.

6.
Cell Biol Int ; 39(2): 152-63, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25049146

RESUMEN

Conditioned medium of mesenchymal stem cells (MSCs) is now being used for its cytoprotective effects, especially when the cells are equipped with cytoprotective factors to strengthen them against unfavorable microenvironments. Overexpression of Lcn2 in MSCs mimics in vivo kidney injury. Hence, unraveling how Lcn2-engineered MSCs affect kidney cells has been investigated. Cisplatin treated HK-2 or HEK293 kidney cells were co-cultivated with Lcn2 overexpressing MSCs in upper and lower chambers of transwell plates. Proliferation, apoptosis, and expression of growth factors and cytokines were assessed in the kidney cells. Co-cultivation with the MSCs-Lcn2 not only inhibited cisplatin-induced cytotoxicity in the HK-2 and HEK293 cells, but increased proliferation rate, prevented cisplatin-induced apoptosis, and increased expression of growth factors and the amount of antioxidants in the kidney cells. Thus Lcn2-engineered MSCs can ameliorate and repair injured kidney cells in vitro, which strongly suggests there are beneficial effects of the MSCs-Lcn2 in cell therapy of kidney injury.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Apoptosis/efectos de los fármacos , Células de la Médula Ósea/citología , Cisplatino/toxicidad , Lipocalinas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Fase Aguda/genética , Antioxidantes/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Citocinas/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lipocalina 2 , Lipocalinas/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Proteínas Proto-Oncogénicas/genética
7.
Cell Stress Chaperones ; 18(6): 785-800, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23620204

RESUMEN

Despite many advantages of mesenchymal stem cells (MSCs) that make them suitable for cell therapy purposes, their therapeutic application has been limited due to their susceptibility to several stresses (e.g., nutrient-poor environment, oxidative stress, and hypoxic and masses of cytotoxic factors) to which they are exposed during their preparation and following transplantation. Hence, reinforcing MSCs against these stresses is a challenge for both basic and clinician scientists. Recently, much attention has been directed toward equipping MSCs with cytoprotective factors to strengthen them against unfavorable microenvironments. Here, we engineered MSCs with lipocalin 2 (Lcn2), a cytoprotective factor that is naturally induced following exposure of cells to stresses imposed by the microenvironment. Lcn2 overexpression not only did not interfere with the multidifferentiation capacity of the MSCs but also granted many protective properties to them. Lcn2 potentiated MSCs to withstand oxidative, hypoxia, and serum deprivation (SD) conditions via antagonizing their induced cytotoxicity and apoptosis. Adhesion rate of MSCs to coated culture plates was also enhanced by Lcn2 overexpression. In addition, Lcn2 induced antioxidants and upregulated some growth factors in MSCs. Our findings suggested a new strategy for prevention of graft cell death in MSC-based cell therapy.


Asunto(s)
Células de la Médula Ósea/citología , Células Madre Mesenquimatosas/metabolismo , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Animales , Antioxidantes/metabolismo , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Microambiente Celular , Hemo-Oxigenasa 1/metabolismo , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lipocalina 2 , Lipocalinas/genética , Lipocalinas/metabolismo , Células Madre Mesenquimatosas/citología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA