Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Quant Imaging Med Surg ; 9(7): 1337-1349, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31448218

RESUMEN

BACKGROUND: Pre-treatment liver tumor localization remains a challenging task for radiation therapy, mostly due to the limited tumor contrast against normal liver tissues, and the respiration-induced liver tumor motion. Recently, we developed a biomechanical modeling-based, deformation-driven cone-beam CT estimation technique (Bio-CBCT), which achieved substantially improved accuracy on low-contrast liver tumor localization. However, the accuracy of Bio-CBCT is still affected by the limited tissue contrast around the caudal liver boundary, which reduces the accuracy of the boundary condition that is fed into the biomechanical modeling process. In this study, we developed a motion modeling and biomechanical modeling-guided CBCT estimation technique (MM-Bio-CBCT), to further improve the liver tumor localization accuracy by incorporating a motion model into the CBCT estimation process. METHODS: MM-Bio-CBCT estimates new CBCT images through deforming a prior high-quality CT or CBCT volume. The deformation vector field (DVF) is solved by iteratively matching the digitally-reconstructed-radiographs (DRRs) of the deformed prior image to the acquired 2D cone-beam projections. Using the same solved DVF, the liver tumor volume contoured on the prior image can be transferred onto the new CBCT image for automatic tumor localization. To maximize the accuracy of the solved DVF, MM-Bio-CBCT employs two strategies for additional DVF optimization: (I) prior-knowledge-guided liver boundary motion modeling with motion patterns extracted from a prior 4D imaging set like 4D-CTs/4D-CBCTs, to improve the liver boundary DVF accuracy; and (II) finite-element-analysis-based biomechanical modeling of the liver volume to improve the intra-liver DVF accuracy. We evaluated the accuracy of MM-Bio-CBCT on both the digital extended-cardiac-torso (XCAT) phantom images and real liver patient images. The liver tumor localization accuracy of MM-Bio-CBCT was evaluated and compared with that of the purely intensity-driven 2D-3D deformation technique, the 2D-3D deformation technique with motion modeling, and the Bio-CBCT technique. Metrics including the DICE coefficient and the center-of-mass-error (COME) were assessed for quantitative evaluation. RESULTS: Using limited-view 20 projections for CBCT estimation, the average (± SD) DICE coefficients between the estimated and the 'gold-standard' liver tumors of the XCAT study were 0.57±0.31, 0.78±0.26, 0.83±0.21, and 0.89±0.11 for 2D-3D deformation, 2D-3D deformation with motion modeling, Bio-CBCT and MM-Bio-CBCT techniques, respectively. Using 20 projections for estimation, the patient study yielded average DICE results of 0.63±0.21, 0.73±0.13 and 0.78±0.12, and 0.83±0.09, correspondingly. The MM-Bio-CBCT localized the liver tumor to an average COME of ~2 mm for both the XCAT and the liver patient studies. CONCLUSIONS: Compared to Bio-CBCT, MM-Bio-CBCT further improves the accuracy of liver tumor localization. MM-Bio-CBCT can potentially be used towards pre-treatment liver tumor localization and intra-treatment liver tumor location verification to achieve substantial radiotherapy margin reduction.

2.
Radiother Oncol ; 133: 183-192, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30448003

RESUMEN

PURPOSE: To improve the accuracy of liver tumor localization, this study tests a biomechanical modeling-guided liver cone-beam CT (CBCT) estimation (Bio-CBCT-est) technique, which generates new CBCTs by deforming a prior high-quality CT or CBCT image using deformation vector fields (DVFs). The DVFs can be used to propagate tumor contours from the prior image to new CBCTs for automatic 4D tumor localization. METHODS/MATERIALS: To solve the DVFs, the Bio-CBCT-est technique employs an iterative scheme that alternates between intensity-driven 2D-3D deformation and biomechanical modeling-guided DVF regularization and optimization. The 2D-3D deformation step solves DVFs by matching digitally reconstructed radiographs of the 3D deformed prior image to 2D phase-sorted on-board projections according to imaging intensities. This step's accuracy is limited at low-contrast intra-liver regions without sufficient intensity variations. To boost the DVF accuracy in these regions, we use the intensity-driven DVFs solved at higher-contrast liver boundaries to fine-tune the intra-liver DVFs by finite element analysis-based biomechanical modeling. We evaluated Bio-CBCT-est's accuracy with seven liver cancer patient cases. For each patient, we simulated 4D cone-beam projections from 4D-CT images, and used these projections for Bio-CBCT-est based image estimations. After Bio-CBCT-est, the DVF-propagated liver tumor/cyst contours were quantitatively compared with the manual contours on the original 4D-CT 'reference' images, using the DICE similarity index, the center-of-mass-error (COME), the Hausdorff distance (HD) and the voxel-wise cross-correlation (CC) metrics. In addition to simulation, we also performed a preliminary study to qualitatively evaluate the Bio-CBCT-est technique via clinically acquired cone beam projections. A quantitative study using an in-house deformable liver phantom was also performed. RESULTS: Using 20 projections for image estimation, the average (±s.d.) DICE index increased from 0.48 ±â€¯0.13 (by 2D-3D deformation) to 0.77 ±â€¯0.08 (by Bio-CBCT-est), the average COME decreased from 7.7 ±â€¯1.5 mm to 2.2 ±â€¯1.2 mm, the average HD decreased from 10.6 ±â€¯2.2 mm to 5.9 ±â€¯2.0 mm, and the average CC increased from -0.004 ±â€¯0.216 to 0.422 ±â€¯0.206. The tumor/cyst trajectory solved by Bio-CBCT-est matched well with that manually obtained from 4D-CT reference images. CONCLUSIONS: Bio-CBCT-est substantially improves the accuracy of 4D liver tumor localization via cone-beam projections and a biomechanical model.


Asunto(s)
Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Tomografía Computarizada de Haz Cónico/métodos , Tomografía Computarizada Cuatridimensional/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen
3.
IEEE Trans Med Imaging ; 36(2): 641-652, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27831866

RESUMEN

Two-dimensional-to-three-dimensional (2D-3D) deformation has emerged as a new technique to estimate cone-beam computed tomography (CBCT) images. The technique is based on deforming a prior high-quality 3D CT/CBCT image to form a new CBCT image, guided by limited-view 2D projections. The accuracy of this intensity-based technique, however, is often limited in low-contrast image regions with subtle intensity differences. The solved deformation vector fields (DVFs) can also be biomechanically unrealistic. To address these problems, we have developed a biomechanical modeling guided CBCT estimation technique (Bio-CBCT-est) by combining 2D-3D deformation with finite element analysis (FEA)-based biomechanical modeling of anatomical structures. Specifically, Bio-CBCT-est first extracts the 2D-3D deformation-generated displacement vectors at the high-contrast anatomical structure boundaries. The extracted surface deformation fields are subsequently used as the boundary conditions to drive structure-based FEA to correct and fine-tune the overall deformation fields, especially those at low-contrast regions within the structure. The resulting FEA-corrected deformation fields are then fed back into 2D-3D deformation to form an iterative loop, combining the benefits of intensity-based deformation and biomechanical modeling for CBCT estimation. Using eleven lung cancer patient cases, the accuracy of the Bio-CBCT-est technique has been compared to that of the 2D-3D deformation technique and the traditional CBCT reconstruction techniques. The accuracy was evaluated in the image domain, and also in the DVF domain through clinician-tracked lung landmarks.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Humanos , Imagenología Tridimensional , Pulmón , Neoplasias Pulmonares , Fantasmas de Imagen
4.
Phys Med Biol ; 60(22): 8833-49, 2015 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-26531324

RESUMEN

Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.


Asunto(s)
Simulación por Computador , Tomografía Computarizada Cuatridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Modelos Biológicos , Movimiento/fisiología , Mecánica Respiratoria , Algoritmos , Análisis de Elementos Finitos , Humanos , Interpretación de Imagen Radiográfica Asistida por Computador , Técnicas de Imagen Sincronizada Respiratorias
5.
Int J Radiat Oncol Biol Phys ; 91(2): 368-75, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25445555

RESUMEN

PURPOSE: Tumor positional uncertainty has been identified as a major issue that deteriorates the efficacy of radiation therapy. Tumor rotational movement, which is not well understood, can result in significant geometric and dosimetric inaccuracies. The objective of this study was to measure 6 degrees-of-freedom (6 DoF) prostate and lung tumor motion, focusing on the more novel rotation, using kilovoltage intrafraction monitoring (KIM). METHODS AND MATERIALS: Continuous kilovoltage (kV) projections of tumors with gold fiducial markers were acquired during radiation therapy for 267 fractions from 10 prostate cancer patients and immediately before or after radiation therapy for 50 fractions from 3 lung cancer patients. The 6 DoF motion measurements were determined from the individual 3-dimensional (3D) marker positions, after using methods to reject spurious and smooth noisy data, using an iterative closest point algorithm. RESULTS: There were large variations in the magnitude of the tumor rotation among different fractions and patients. Various rotational patterns were observed. The average prostate rotation angles around the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) axes were 1.0 ± 5.0°, 0.6 ± 3.3°, and 0.3 ± 2.0°, respectively. For 35% of the time, the prostate rotated more than 5° about the LR axis, indicating the need for intrafractional adaptation during radiation delivery. For lung patients, the average LR, SI, and AP rotation angles were 0.8 ± 4.2°, -0.8 ± 4.5°, and 1.7 ± 3.1°, respectively. For about 30% of the time, the lung tumors rotated more than 5° around the SI axis. Respiration-induced rotation was detected in 2 of the 3 lung patients. CONCLUSIONS: The prostate and lung tumors were found to undergo rotations of more than 5° for about a third of the time. The lung tumor data represent the first 6 DoF tumor motion measured by kV images. The 6 DoF KIM method can enable rotational and translational adaptive radiation therapy and potentially reduce treatment margins.


Asunto(s)
Algoritmos , Imagenología Tridimensional/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/fisiopatología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/fisiopatología , Fraccionamiento de la Dosis de Radiación , Femenino , Marcadores Fiduciales , Humanos , Imagenología Tridimensional/instrumentación , Neoplasias Pulmonares/radioterapia , Masculino , Movimiento (Física) , Movimiento , Neoplasias de la Próstata/radioterapia , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/instrumentación , Radioterapia Guiada por Imagen/métodos , Reproducibilidad de los Resultados , Rotación , Sensibilidad y Especificidad
6.
Physiol Meas ; 35(6): 1125-35, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24845453

RESUMEN

Electrical impedance tomography is an attractive functional imaging method. It is currently limited in resolution and sensitivity due to the complexity of the inverse problem and the safety limits of introducing current. Recently, internal electrodes have been proposed for some clinical situations such as intensive care or RF ablation. This paper addresses the research question related to the benefit of one or more internal electrodes usage since these are invasive. Internal electrodes would be able to reduce the effect of insulating boundaries such as fat and bone and provide improved internal sensitivity. We found there was a measurable benefit with increased numbers of internal electrodes in saline tanks of a cylindrical and complex shape with up to two insulating boundary gel layers modeling fat and muscle. The internal electrodes provide increased sensitivity to internal changes, thereby increasing the amplitude response and improving resolution. However, they also present an additional challenge of increasing sensitivity to position and modeling errors. In comparison with previous work that used point sources for the internal electrodes, we found that it is important to use a detailed mesh of the internal electrodes with these voxels assigned to the conductivity of the internal electrode and its associated holder. A study of different internal electrode materials found that it is optimal to use a conductivity similar to the background. In the tank with a complex shape, the additional internal electrodes provided more robustness in a ventilation model of the lungs via air filled balloons.


Asunto(s)
Artefactos , Conductividad Eléctrica , Animales , Simulación por Computador , Electrodos , Procesamiento de Imagen Asistido por Computador , Modelos Animales , Modelos Teóricos , Ventilación Pulmonar/fisiología , Sus scrofa
7.
Phys Med Biol ; 58(23): 8517-33, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24240537

RESUMEN

Previous studies have shown that during cancer radiotherapy a small translation or rotation of the tumor can lead to errors in dose delivery. Current best practice in radiotherapy accounts for tumor translations, but is unable to address rotation due to a lack of a reliable real-time estimate. We have developed a method based on the iterative closest point (ICP) algorithm that can compute rotation from kilovoltage x-ray images acquired during radiation treatment delivery. A total of 11 748 kilovoltage (kV) images acquired from ten patients (one fraction for each patient) were used to evaluate our tumor rotation algorithm. For each kV image, the three dimensional coordinates of three fiducial markers inside the prostate were calculated. The three dimensional coordinates were used as input to the ICP algorithm to calculate the real-time tumor rotation and translation around three axes. The results show that the root mean square error was improved for real-time calculation of tumor displacement from a mean of 0.97 mm with the stand alone translation to a mean of 0.16 mm by adding real-time rotation and translation displacement with the ICP algorithm. The standard deviation (SD) of rotation for the ten patients was 2.3°, 0.89° and 0.72° for rotation around the right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively. The correlation between all six degrees of freedom showed that the highest correlation belonged to the AP and SI translation with a correlation of 0.67. The second highest correlation in our study was between the rotation around RL and rotation around AP, with a correlation of -0.33. Our real-time algorithm for calculation of rotation also confirms previous studies that have shown the maximum SD belongs to AP translation and rotation around RL. ICP is a reliable and fast algorithm for estimating real-time tumor rotation which could create a pathway to investigational clinical treatment studies requiring real-time measurement and adaptation to tumor rotation.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Rotación , Tomografía Computarizada por Rayos X/métodos , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...