Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 10(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38535186

RESUMEN

The supramolecular striatin-interacting phosphatases and kinases (STRIPAK) complex is highly conserved in eukaryotes and controls diverse developmental processes in fungi. STRIPAK is genetically and physically linked to the Hippo-related septation initiation network (SIN), which signals through a chain of three kinases, including the terminal nuclear Dbf2-related (NDR) family kinase DBF2. Here, we provide evidence for the function of DBF2 during sexual development and vegetative growth of the homothallic ascomycetous model fungus Sordaria macrospora. Using mutants with a deleted dbf2 gene and complemented strains carrying different variants of dbf2, we demonstrate that dbf2 is essential for fruiting body formation, as well as septum formation of vegetative hyphae. Furthermore, we constructed dbf2 mutants carrying phospho-mimetic and phospho-deficient codons for two conserved phosphorylation sites. Growth tests of the phosphorylation mutants showed that coordinated phosphorylation is crucial for controlling vegetative growth rates and maintaining proper septum distances. Finally, we investigated the function of DBF2 by overexpressing the dbf2 gene. The corresponding transformants showed disturbed cytokinesis during ascospore formation. Thus, regulated phosphorylation of DBF2 and precise expression of the dbf2 gene are essential for accurate septation in vegetative hyphae and coordinated cell division during septation and sexual spore formation.

2.
J Fungi (Basel) ; 8(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36294581

RESUMEN

The formation of fruiting bodies is a highly regulated process that requires the coordinated formation of different cell types. By analyzing developmental mutants, many developmental factors have already been identified. Yet, a complete understanding of fruiting body formation is still lacking. In this study, we analyzed developmental mutant pro34 of the filamentous ascomycete Sordaria macrospora. Genome sequencing revealed a deletion in the pro34 gene encoding a putative mitochondrial complex I assembly factor homologous to Neurospora crassa CIA84. We show that PRO34 is required for fast vegetative growth, fruiting body and ascospore formation. The pro34 transcript undergoes adenosine to inosine editing, a process correlated with sexual development in fruiting body-forming ascomycetes. Fluorescence microscopy and western blot analysis showed that PRO34 is a mitochondrial protein, and blue-native PAGE revealed that the pro34 mutant lacks mitochondrial complex I. Inhibitor experiments revealed that pro34 respires via complexes III and IV, but also shows induction of alternative oxidase, a shunt pathway to bypass complexes III and IV. We discuss the hypothesis that alternative oxidase is induced to prevent retrograde electron transport to complex I intermediates, thereby protecting from oxidative stress.

3.
J Biophotonics ; 15(6): e202100359, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35184408

RESUMEN

Light-sheet fluorescence microscopy (LSFM) is useful for developmental biology studies, which require a simultaneous visualization of dynamic microstructures over large fields of views (FOVs). A comparative study between multicolor Bessel and Gaussian-based LSFM systems is presented. Discussing the chromatic implications to achieve colocalized and large FOVs when both optical arrays are implemented under the same excitation objective is the purpose of this work. The light-sheets FOVs, optical sectioning, and resolution are experimentally characterized and discussed. The advantages of using Bessel beams and the main drawbacks of using Gaussian beams for multicolor imaging are highlighted. Multiple Bessel excitation minimizes the FOV's mismatch's effects due to the beams chromatic defocusing and alleviates the aside object blurring obtained with multiple Gaussian beams. It also offers a fair homogeneous axial resolution and optical sectioning over a larger effective FOV. Imaging over perithecia samples of the fungus Sordaria macrospora demonstrates such advantages. This work complements previous comparative studies that discuss only single wavelengths light-sheets excitations.


Asunto(s)
Técnicas Histológicas , Microscopía Fluorescente/métodos , Distribución Normal
4.
Curr Genet ; 67(2): 317-330, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33367953

RESUMEN

The cloning of plasmids can be time-consuming or expensive. Yet, cloning is a prerequisite for many standard experiments for the functional analysis of genes, including the generation of deletion mutants and the localization of gene products. Here, we provide Golden Gate vectors for fast and easy cloning of gene fusion as well as gene deletion vectors applicable to diverse fungi. In Golden Gate cloning, restriction and ligation occur simultaneously in a one-pot reaction. Our vector set contains recognition sites for the commonly used type IIS restriction endonuclease BsaI. We generated plasmids for C- as well as N-terminal tagging with GFP, mRFP and 3xFLAG. For gene deletion, we provide five different donor vectors for selection marker cassettes. These include standard cassettes for hygromycin B, nourseothricin and phleomycin resistance genes as well as FLP/FRT-based marker recycling cassettes for hygromycin B and nourseothricin resistance genes. To make cloning most feasible, we provide robust protocols, namely (1) an overview of cloning procedures described in this paper, (2) specific Golden Gate reaction protocols and (3) standard primers for cloning and sequencing of plasmids and generation of deletion cassettes by PCR and split-marker PCR. We show that our vector set is applicable for the biotechnologically relevant Penicillium chrysogenum and the developmental model system Sordaria macrospora. We thus expect these vectors to be beneficial for other fungi as well. Finally, the vectors can easily be adapted to organisms beyond the kingdom fungi.


Asunto(s)
Clonación Molecular/métodos , Eliminación de Gen , Fusión Génica/genética , Ingeniería Genética , Hongos/genética , Vectores Genéticos , Plásmidos/genética , Sordariales/genética
5.
PLoS Genet ; 16(9): e1008819, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32997654

RESUMEN

The striatin-interacting phosphatase and kinase (STRIPAK) multi-subunit signaling complex is highly conserved within eukaryotes. In fungi, STRIPAK controls multicellular development, morphogenesis, pathogenicity, and cell-cell recognition, while in humans, certain diseases are related to this signaling complex. To date, phosphorylation and dephosphorylation targets of STRIPAK are still widely unknown in microbial as well as animal systems. Here, we provide an extended global proteome and phosphoproteome study using the wild type as well as STRIPAK single and double deletion mutants (Δpro11, Δpro11Δpro22, Δpp2Ac1Δpro22) from the filamentous fungus Sordaria macrospora. Notably, in the deletion mutants, we identified the differential phosphorylation of 129 proteins, of which 70 phosphorylation sites were previously unknown. Included in the list of STRIPAK targets are eight proteins with RNA recognition motifs (RRMs) including GUL1. Knockout mutants and complemented transformants clearly show that GUL1 affects hyphal growth and sexual development. To assess the role of GUL1 phosphorylation on fungal development, we constructed phospho-mimetic and -deficient mutants of GUL1 residues. While S180 was dephosphorylated in a STRIPAK-dependent manner, S216, and S1343 served as non-regulated phosphorylation sites. While the S1343 mutants were indistinguishable from wild type, phospho-deficiency of S180 and S216 resulted in a drastic reduction in hyphal growth, and phospho-deficiency of S216 also affects sexual fertility. These results thus suggest that differential phosphorylation of GUL1 regulates developmental processes such as fruiting body maturation and hyphal morphogenesis. Moreover, genetic interaction studies provide strong evidence that GUL1 is not an integral subunit of STRIPAK. Finally, fluorescence microscopy revealed that GUL1 co-localizes with endosomal marker proteins and shuttles on endosomes. Here, we provide a new mechanistic model that explains how STRIPAK-dependent and -independent phosphorylation of GUL1 regulates sexual development and asexual growth.


Asunto(s)
Endosomas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Unión al ARN/metabolismo , Sordariales/metabolismo , Núcleo Celular/metabolismo , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/metabolismo , Proteínas Fúngicas/genética , Hifa/genética , Hifa/metabolismo , Microscopía Fluorescente , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Subunidades de Proteína , Proteómica/métodos , Proteínas de Unión al ARN/genética , Transducción de Señal , Sordariales/genética , Sordariales/crecimiento & desarrollo
6.
Front Microbiol ; 11: 1722, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849367

RESUMEN

Sexual and asexual development in filamentous ascomycetes is controlled by components of conserved signaling pathways. Here, we investigated the development of mutant strains lacking genes for kinases MAK2, MEK2, and MIK2, as well as the scaffold protein HAM5 of the pheromone response (PR) pathway. All had a defect in fruiting body development and hyphal fusion. Another phenotype was a defect in melanin-dependent ascospore germination. However, this deficiency was observed only in kinase deletion mutants, but not in strains lacking HAM5. Notably, the same developmental phenotypes were previously described for nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1) mutants, but the germination defect was only seen in NOX2 mutants. These data suggest a molecular link between the pheromone signaling pathway and both NOX complexes. Using data from yeast two-hybrid (Y2H) analysis, we found that the scaffolding protein HAM5 interacts with NOR1, the regulator of NOX1 and NOX2 complexes. This interaction was further confirmed using differently fluorescent-labeled proteins to demonstrate that NOR1 and HAM5 co-localize at cytoplasmic spots and tips of mature hyphae. This observation was supported by phenotypic characterization of single and double mutants. The oxidative stress response and the initiation of fruiting bodies were similar in Δham5Δnor1 and Δham5, but distinctly reduced in Δnor1, indicating that the double deletion leads to a partial suppression of the Δnor1 phenotype. We conclude that the PR and NOX1 complexes are connected by direct interaction between HAM5 and NOR1. In contrast, PR kinases are linked to the NOX2 complex without participation of HAM5.

7.
Appl Microbiol Biotechnol ; 104(13): 5689-5695, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32382933

RESUMEN

RNA editing occurs in all kingdoms of life and in various RNA species. The editing of nuclear protein-coding transcripts has long been known in metazoans, but was only recently detected in fungi. In contrast to many metazoan species, fungal editing sites occur mostly in coding regions, and therefore, fungal editing can change protein sequences and lead to modified or new functions of proteins. Indeed, mRNA editing is thought to be generally adaptive on fungi. Although RNA editing has been detected in both, Ascomycota and Basidiomycota, there seem to be considerable differences between these two classes of fungi concerning the types, the timing, and the purpose of editing. This review summarizes the characteristics of RNA editing in fungi and compares them to metazoan species and bacteria. In particular, it will review cellular processes affected by editing and speculate on the purpose of editing for fungal biology with a focus on the filamentous ascomycetes. KEY POINTS: • Fungi show various types of mRNA editing in nuclear transcripts. • Fungal editing leads to proteome diversification. • Filamentous ascomycetes may require editing for sexual sporulation. • Wood-degrading basidiomycetes may use editing for adaptation to different substrates.


Asunto(s)
Hongos/genética , Edición de ARN , ARN de Hongos/genética , ARN Mensajero/genética , Adaptación Fisiológica , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/fisiología , Evolución Biológica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/clasificación , Hongos/metabolismo , Hongos/fisiología , Regulación Fúngica de la Expresión Génica , Esporas Fúngicas/clasificación , Esporas Fúngicas/genética , Esporas Fúngicas/fisiología
8.
Appl Microbiol Biotechnol ; 104(9): 3691-3704, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32162092

RESUMEN

Fruiting bodies are among the most complex multicellular structures formed by fungi, and the molecular mechanisms that regulate their development are far from understood. However, studies with a number of fungal model organisms have started to shed light on this developmental process. One of these model organisms is Sordaria macrospora, a filamentous ascomycete from the order Sordariales. This fungus has been a genetic model organism since the 1950s, but its career as a model organism for molecular genetics really took off in the 1990s, when the establishment of a transformation protocol, a mutant collection, and an indexed cosmid library provided the methods and resources to start revealing the molecular mechanisms of fruiting body development. In the 2000s, "omics" methods were added to the S. macrospora tool box, and by 2020, 58 developmental genes have been identified in this fungus. This review gives a brief overview of major method developments for S. macrospora, and then focuses on recent results characterizing different processes involved in regulating development including several regulatory protein complexes, autophagy, transcriptional and chromatin regulation, and RNA editing. KEY POINTS: •Sordaria macrospora is a model system for analyzing fungal fruiting body development. •More than 100 developmental mutants are available for S. macrospora. •More than 50 developmental genes have been characterized in S. macrospora.


Asunto(s)
Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/fisiología , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Sordariales/genética , Autofagia/genética , Edición de ARN , Sordariales/fisiología , Factores de Transcripción/genética
9.
Biol Chem ; 400(8): 1005-1022, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31042639

RESUMEN

The striatin-interacting phosphatases and kinases (STRIPAK) complex is evolutionary highly conserved and has been structurally and functionally described in diverse lower and higher eukaryotes. In recent years, this complex has been biochemically characterized better and further analyses in different model systems have shown that it is also involved in numerous cellular and developmental processes in eukaryotic organisms. Further recent results have shown that the STRIPAK complex functions as a macromolecular assembly communicating through physical interaction with other conserved signaling protein complexes to constitute larger dynamic protein networks. Here, we will provide a comprehensive and up-to-date overview of the architecture, function and regulation of the STRIPAK complex and discuss key issues and future perspectives, linked with human diseases, which may form the basis of further research endeavors in this area. In particular, the investigation of bi-directional interactions between STRIPAK and other signaling pathways should elucidate upstream regulators and downstream targets as fundamental parts of a complex cellular network.

10.
BMC Genet ; 19(1): 112, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30545291

RESUMEN

BACKGROUND: Fungal fruiting bodies are complex three-dimensional structures that are formed to protect and disperse the sexual spores. Their morphogenesis requires the concerted action of numerous genes; however, at the molecular level, the spatio-temporal sequence of events leading to the mature fruiting body is largely unknown. In previous studies, the transcription factor gene pro44 and the histone chaperone gene asf1 were shown to be essential for fruiting body formation in the ascomycete Sordaria macrospora. Both PRO44 and ASF1 are predicted to act on the regulation of gene expression in the nucleus, and mutants in both genes are blocked at the same stage of development. Thus, we hypothesized that PRO44 and ASF1 might be involved in similar aspects of transcriptional regulation. In this study, we characterized their roles in fruiting body development in more detail. RESULTS: The PRO44 protein forms homodimers, localizes to the nucleus, and is strongly expressed in the outer layers of the developing young fruiting body. Analysis of single and double mutants of asf1 and three other chromatin modifier genes, cac2, crc1, and rtt106, showed that only asf1 is essential for fruiting body formation whereas cac2 and rtt106 might have redundant functions in this process. RNA-seq analysis revealed distinct roles for asf1 and pro44 in sexual development, with asf1 acting as a suppressor of weakly expressed genes during morphogenesis. This is most likely not due to global mislocalization of nucleosomes as micrococcal nuclease-sequencing did not reveal differences in nucleosome spacing and positioning around transcriptional start sites between Δasf1 and the wild type. However, bisulfite sequencing revealed a decrease in DNA methylation in Δasf1, which might be a reason for the observed changes in gene expression. Transcriptome analysis of gene expression in young fruiting bodies showed that pro44 is required for correct expression of genes involved in extracellular metabolism. Deletion of the putative transcription factor gene asm2, which is downregulated in young fruiting bodies of Δpro44, results in defects during ascospore maturation. CONCLUSIONS: In summary, the results indicate distinct roles for the transcription factor PRO44 and the histone chaperone ASF1 in the regulation of sexual development in fungi.


Asunto(s)
Proteínas Fúngicas/genética , Chaperonas Moleculares/genética , Sordariales/genética , Factores de Transcripción/genética , Núcleo Celular/metabolismo , Dimerización , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Chaperonas Moleculares/metabolismo , Mutagénesis , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , Análisis de Secuencia de ARN , Sordariales/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
12.
Genetics ; 210(1): 137-153, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30012560

RESUMEN

The supramolecular striatin-interacting phosphatases and kinases (STRIPAK) complex is conserved from yeast to human, and regulates a variety of key biological processes. In animals, this complex consists of the scaffold protein striatin, the protein phosphatase 2A, and kinases, such as germinal center kinase (GCK) III and GCKIV family members, as well as other associated proteins. The STRIPAK complex was identified as a negative regulator of the Hippo pathway, a large eukaryotic signaling network with a core composed of a GCK and a nuclear Dbf2-related kinase. The signaling architecture of the Hippo core resembles the fungal septation initiation network (SIN) that regulates cytokinesis in fission yeast as well as septation in filamentous fungi. In the filamentous model fungus Sordaria macrospora, core components of the STRIPAK complex have been functionally described and the striatin homolog PRO11 has been shown to interact with the GCK SmKIN3. However, the exact role of SmKIN3 in fungal development has not yet been fully elucidated. Here, we provide comprehensive genetic and functional analysis of SmKIN3 from S. macrospora Using deletion mutants and site-directed mutagenesis, along with phenotypic and phylogenetic analysis, we provide compelling evidence that SmKIN3 is involved in fruiting body formation, hyphal fusion, and septation. Strains carrying the ATP-binding mutant SmKIN3K39R, as well as a double-deletion strain lacking SmKIN3 and the core STRIPAK subunit PRO11, also revealed severe developmental defects. Collectively, this study suggests that SmKIN3 links both the SIN and STRIPAK complex, thereby regulating multiple key cellular processes.


Asunto(s)
Proteínas Serina-Treonina Quinasas/genética , Sordariales/crecimiento & desarrollo , Sordariales/genética , Secuencia de Aminoácidos , Cuerpos Fructíferos de los Hongos/metabolismo , Proteínas Fúngicas/genética , Quinasas del Centro Germinal , Hifa/genética , Hifa/crecimiento & desarrollo , Filogenia , Proteína Fosfatasa 2/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
13.
Genome Biol Evol ; 9(4): 855-868, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28338982

RESUMEN

RNA editing is a post-transcriptional process that modifies RNA molecules leading to transcript sequences that differ from their template DNA. A-to-I editing was found to be widely distributed in nuclear transcripts of metazoa, but was detected in fungi only recently in a study of the filamentous ascomycete Fusarium graminearum that revealed extensive A-to-I editing of mRNAs in sexual structures (fruiting bodies). Here, we searched for putative RNA editing events in RNA-seq data from Sordaria macrospora and Pyronema confluens, two distantly related filamentous ascomycetes, and in data from the Taphrinomycete Schizosaccharomyces pombe. Like F. graminearum, S. macrospora is a member of the Sordariomycetes, whereas P. confluens belongs to the early-diverging group of Pezizomycetes. We found extensive A-to-I editing in RNA-seq data from sexual mycelium from both filamentous ascomycetes, but not in vegetative structures. A-to-I editing was not detected in different stages of meiosis of S. pombe. A comparison of A-to-I editing in S. macrospora with F. graminearum and P. confluens, respectively, revealed little conservation of individual editing sites. An analysis of RNA-seq data from two sterile developmental mutants of S. macrospora showed that A-to-I editing is strongly reduced in these strains. Sequencing of cDNA fragments containing more than one editing site from P. confluens showed that at the beginning of sexual development, transcripts were incompletely edited or unedited, whereas in later stages transcripts were more extensively edited. Taken together, these data suggest that A-to-I RNA editing is an evolutionary conserved feature during fruiting body development in filamentous ascomycetes.


Asunto(s)
Ascomicetos/genética , Hongos/genética , Edición de ARN/genética , Desarrollo Sexual/genética , Ascomicetos/crecimiento & desarrollo , Secuencia de Bases/genética , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Hongos/crecimiento & desarrollo , Fusarium/genética , Fusarium/crecimiento & desarrollo , Regulación Fúngica de la Expresión Génica , Mutación , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Sordariales/genética , Sordariales/crecimiento & desarrollo
14.
Fungal Genet Biol ; 98: 20-22, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27890627

RESUMEN

The ascomycete Sordaria macrospora has a long history as a model organism for studying fungal sexual development. Starting from an ascospore, sexual fruiting bodies (perithecia) develop within seven days and discharge new ascospores. Sexual development has been studied in detail, revealing genes required for perithecium formation and ascospore germination. However, the germination process per se has not yet been examined. Here I analyze nuclear dynamics during ascospore germination using a fluorescently labeled histone. Live-cell imaging revealed that nuclei are transported into germination vesicles that form on one side of the spore. Polar growth is established from these vesicles.


Asunto(s)
Proteínas Fúngicas/genética , Hifa/genética , Sordariales/genética , Esporas Fúngicas/genética , Cuerpos Fructíferos de los Hongos , Proteínas Fúngicas/aislamiento & purificación , Germinación/genética , Histonas/química , Histonas/genética , Hifa/crecimiento & desarrollo , Mutación , Imagen Óptica , Sordariales/crecimiento & desarrollo , Esporas Fúngicas/crecimiento & desarrollo
15.
Mol Genet Genomics ; 292(1): 93-104, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27770259

RESUMEN

During the sexual life cycle of filamentous fungi, multicellular fruiting bodies are generated for the dispersal of spores. The filamentous ascomycete Sordaria macrospora has a long history as a model system for studying fruiting body formation, and two collections of sterile mutants have been generated. However, for most of these mutants, the underlying genetic defect remains unknown. Here, we investigated the mutant spadix (spd) that was generated by X-ray mutagenesis in the 1950s and terminates sexual development after the formation of pre-fruiting bodies (protoperithecia). We sequenced the spd genome and found a 22 kb deletion affecting four genes, which we termed spd1-4. Generation of deletion strains revealed that only spd4 is required for fruiting body formation. Although sterility in S. macrospora is often coupled with a vegetative hyphal fusion defect, Δspd4 was still capable of fusion. This feature distinguishes SPD4 from many other regulators of sexual development. Remarkably, GFP-tagged SPD4 accumulated in the nuclei of vegetative hyphae and fruiting body initials, the ascogonial coils, but not in sterile tissue from the developing protoperithecium. Our results point to SPD4 as a specific determinant of fruiting body formation. Research on SPD4 will, therefore, contribute to understanding cellular reprogramming during initiation of sexual development in fungi.


Asunto(s)
Cuerpos Fructíferos de los Hongos , Proteínas Fúngicas/genética , Sordariales/citología , Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Hifa/metabolismo , Mutagénesis , Sordariales/genética , Sordariales/crecimiento & desarrollo , Sordariales/metabolismo
16.
Mol Microbiol ; 102(5): 792-809, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27560538

RESUMEN

The filamentous fungus Sordaria macrospora is a model system to study multicellular development during fruiting body formation. Previously, we demonstrated that this major process in the sexual life cycle is controlled by the Zn(II)2 Cys6 zinc cluster transcription factor PRO1. Here, we further investigated the genome-wide regulatory network controlled by PRO1 by employing chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) to identify binding sites for PRO1. We identified several target regions that occur in the promoter regions of genes encoding components of diverse signaling pathways. Furthermore, we identified a conserved DNA-binding motif that is bound specifically by PRO1 in vitro. In addition, PRO1 controls in vivo the expression of a DsRed reporter gene under the control of the esdC target gene promoter. Our ChIP-seq data suggest that PRO1 also controls target genes previously shown to be involved in regulating the pathways controlling cell wall integrity, NADPH oxidase and pheromone signaling. Our data point to PRO1 acting as a master regulator of genes for signaling components that comprise a developmental cascade controlling fruiting body formation.


Asunto(s)
Proteínas Fúngicas/genética , Hongos/genética , Sordariales/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Unión al ADN , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Genes Reporteros , Unión Proteica , Transducción de Señal , Sordariales/metabolismo , Factores de Transcripción/metabolismo , Dedos de Zinc
17.
mBio ; 7(3)2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27329756

RESUMEN

UNLABELLED: The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora Fruiting body development is controlled by subunits of the highly conserved striatin-interacting phosphatase and kinase (STRIPAK) complex, which has been described in organisms ranging from yeasts to humans. The highly conserved heterotrimeric protein phosphatase PP2A is a subunit of STRIPAK. Here, catalytic subunit 1 of PP2A was functionally characterized. The Δpp2Ac1 strain is sterile, unable to undergo hyphal fusion, and devoid of ascogonial septation. Further, PP2Ac1, together with STRIPAK subunit PRO22, governs vegetative and stress-related growth. We revealed in vitro catalytic activity of wild-type PP2Ac1, and our in vivo analysis showed that inactive PP2Ac1 blocks the complementation of the sterile deletion strain. Tandem affinity purification, followed by mass spectrometry and yeast two-hybrid analysis, verified that PP2Ac1 is a subunit of STRIPAK. Further, these data indicate links between the STRIPAK complex and other developmental signaling pathways, implying the presence of a large interconnected signaling network that controls eukaryotic developmental processes. The insights gained in our study can be transferred to higher eukaryotes and will be important for understanding eukaryotic cellular development in general. IMPORTANCE: The striatin-interacting phosphatase and kinase (STRIPAK) complex is highly conserved from yeasts to humans and is an important regulator of numerous eukaryotic developmental processes, such as cellular signaling and cell development. Although functional insights into the STRIPAK complex are accumulating, the detailed molecular mechanisms of single subunits are only partially understood. The first fungal STRIPAK was described in Sordaria macrospora, which is a well-established model organism used to study the formation of fungal fruiting bodies, three-dimensional organ-like structures. We analyzed STRIPAK subunit PP2Ac1, catalytic subunit 1 of protein phosphatase PP2A, to study the importance of the catalytic activity of this protein during sexual development. The results of our yeast two-hybrid analysis and tandem affinity purification, followed by mass spectrometry, indicate that PP2Ac1 activity connects STRIPAK with other signaling pathways and thus forms a large interconnected signaling network.


Asunto(s)
Cuerpos Fructíferos de los Hongos/enzimología , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Recombinación Homóloga , Complejos Multienzimáticos/química , Proteína Fosfatasa 2/metabolismo , Sordariales/enzimología , Sordariales/crecimiento & desarrollo , Dominio Catalítico/genética , Ciclo Celular , Eliminación de Gen , Espectrometría de Masas , Proteína Fosfatasa 2/genética , Técnicas del Sistema de Dos Híbridos
18.
Biochim Biophys Acta ; 1864(6): 645-654, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26969785

RESUMEN

Classical tetracyclines targeting the protein biosynthesis machinery are commonly applied in human and veterinary medicine. The development and spread of resistance seriously compromise the successful treatment of bacterial infections. The atypical tetracycline chelocardin holds promise as it retains activity against tetracycline-resistant strains. It has been suggested that chelocardin targets the bacterial membrane, thus differing in mode of action from that of classical tetracyclines. We investigated the mechanism of action of chelocardin using global proteome analysis. The proteome profiles after sublethal chelocardin stress were compared to a reference compendium containing antibiotic response profiles of Bacillus subtilis. This approach revealed a concentration-dependent dual mechanism of action. At low concentrations, like classical tetracyclines, chelocardin induces the proteomic signature for peptidyl transferase inhibition demonstrating that protein biosynthesis inhibition is the dominant physiological challenge. At higher concentrations B. subtilis mainly responds to membrane stress indicating that at clinically relevant concentrations the membrane is the main antibiotic target of chelocardin. Studying the effects on the membrane in more detail, we found that chelocardin causes membrane depolarization but does not lead to formation of large pores. We conclude that at growth inhibiting doses chelocardin not only targets protein biosynthesis but also corrupts the integrity of the bacterial membrane. This dual mechanism of action might prove beneficial in slowing the development of new resistance mechanisms against this atypical tetracycline.


Asunto(s)
Tetraciclinas/farmacología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Proteoma
19.
Mycologia ; 108(3): 528-32, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26951366

RESUMEN

To spatially resolve genetic differences at the cellular level, the laser-capture microdissection technique was developed. With this method cells can be cut from tissues with a laser beam and analyzed for DNA, RNA or protein composition. Here we adapted the technique to isolate septal microtubule-organizing center (MTOC)-associated proteins in Aspergillus nidulans About 3000 septa were collected and subjected to peptide fingerprinting by mass-spectrometric analysis. We identified the microtubule polymerase AlpA and found it interacts with ApsB specifically at sMTOCs, suggesting that AlpA might be involved in the assembly or the functioning of this protein complex.


Asunto(s)
Aspergillus nidulans/química , Captura por Microdisección con Láser/métodos , Aspergillus nidulans/genética , Aspergillus nidulans/crecimiento & desarrollo , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifa/química , Hifa/genética , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Centro Organizador de los Microtúbulos/química , Centro Organizador de los Microtúbulos/metabolismo , Unión Proteica
20.
Fungal Genet Biol ; 90: 31-38, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26439752

RESUMEN

The striatin-interacting phosphatases and kinases (STRIPAK) complex is a highly conserved eukaryotic protein complex that was recently described for diverse animal and fungal species. Here, we summarize our current knowledge about the composition and function of the STRIPAK complex from the ascomycete Sordaria macrospora, which we discovered by investigating sexually sterile mutants (pro), having a defect in fruiting body development. Mass spectrometry and yeast two-hybrid analysis defined core subunits of the STRIPAK complex, which have structural homologs in animal and other fungal organisms. These subunits (and their mammalian homologs) are PRO11 (striatin), PRO22 (STRIP1/2), SmMOB3 (Mob3), PRO45 (SLMAP), and PP2AA, the structural, and PP2Ac, the catalytic subunits of protein phosphatase 2A (PP2A). Beside fruiting body formation, the STRIPAK complex controls vegetative growth and hyphal fusion in S. macrospora. Although the contribution of single subunits to diverse cellular and developmental processes is not yet fully understood, functional analysis has already shown that mammalian homologs are able to substitute the function of distinct fungal STRIPAK subunits. This underscores the view that fungal model organisms serve as useful tools to get a molecular insight into cellular and developmental processes of eukaryotes in general. Future work will unravel the precise localization of single subunits within the cell and decipher their STRIPAK-related and STRIPAK-independent functions. Finally, evidence is accumulating that there is a crosstalk between STRIPAK and various signaling pathways, suggesting that eukaryotic development is dependent on STRIPAK signaling.


Asunto(s)
Hongos/enzimología , Monoéster Fosfórico Hidrolasas/fisiología , Fosfotransferasas/fisiología , Animales , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiología , Humanos , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas/metabolismo , Transducción de Señal , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...