Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biogerontology ; 9(3): 169-76, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18236168

RESUMEN

Caloric restriction remains the most reproducible measure known to extend life span or diminish age-associated changes. Previously, we have described an elevated expression of the prolyl-4-hydroxylase domain (PHD) 3 with increasing age in mouse and human heart. PHDs modulate the cellular response towards hypoxia by regulating the stability of the alpha-subunit of the transcriptional activator hypoxia inducible factor (HIF). In the present study we demonstrate that elevated PHD3, but not PHD1 or PHD2, expression is not restricted to the heart but does also occur in rat skeletal muscle and liver. Elevated expression of PHD3 is counteracted by a decrease in caloric intake (40% caloric restriction applied for 6 months) in all three tissues. Age-associated changes in PHD3 expression inversely correlated with the expression of the HIF-target gene macrophage migration inhibitory factor (MIF), which has been previously described to be involved in cellular HIF-mediated anti-ageing effects. These data give insight into the molecular consequences of caloric restriction, which influences hypoxia-mediated gene expression via PHD3.


Asunto(s)
Envejecimiento/metabolismo , Restricción Calórica , Procolágeno-Prolina Dioxigenasa/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN , Masculino , Procolágeno-Prolina Dioxigenasa/química , Ratas , Ratas Sprague-Dawley
2.
Eukaryot Cell ; 7(2): 187-201, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18083831

RESUMEN

In Fusarium fujikuroi, the production of gibberellins and bikaverin is repressed by nitrogen sources such as glutamine or ammonium. Sensing and uptake of ammonium by specific permeases play key roles in nitrogen metabolism. Here, we describe the cloning of three ammonium permease genes, mepA, mepB, and mepC, and their participation in ammonium uptake and signal transduction in F. fujikuroi. The expression of all three genes is strictly regulated by the nitrogen regulator AreA. Severe growth defects of DeltamepB mutants on low-ammonium medium and methylamine uptake studies suggest that MepB functions as the main ammonium permease in F. fujikuroi. In DeltamepB mutants, nitrogen-regulated genes such as the gibberellin and bikaverin biosynthetic genes are derepressed in spite of high extracellular ammonium concentrations. mepA mepB and mepC mepB double mutants show a similar phenotype as DeltamepB mutants. All three F. fujikuroi mep genes fully complemented the Saccharomyces cerevisiae mep1 mep2 mep3 triple mutant to restore growth on low-ammonium medium, whereas only MepA and MepC restored pseudohyphal growth in the mep2/mep2 mutant. Overexpression of mepC in the DeltamepB mutants partially suppressed the growth defect but did not prevent derepression of AreA-regulated genes. These studies provide evidence that MepB functions as a regulatory element in a nitrogen sensing system in F. fujikuroi yet does not provide the sensor activity of Mep2 in yeast, indicating differences in the mechanisms by which nitrogen is sensed in S. cerevisiae and F. fujikuroi.


Asunto(s)
Proteínas Fúngicas/fisiología , Fusarium/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de Transporte de Membrana/metabolismo , Nitrógeno/farmacología , Compuestos de Amonio Cuaternario/metabolismo , Northern Blotting , Southern Blotting , Clonación Molecular , Proteínas Fúngicas/genética , Fusarium/crecimiento & desarrollo , Fusarium/patogenicidad , Eliminación de Gen , Prueba de Complementación Genética , Proteínas de Transporte de Membrana/genética , Filogenia , Reacción en Cadena de la Polimerasa , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Transformación Genética
3.
Eukaryot Cell ; 5(10): 1807-19, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17031002

RESUMEN

In Fusarium fujikuroi, the biosynthesis of gibberellins (GAs) and bikaverin is under control of AreA-mediated nitrogen metabolite repression. Thus far, the signaling components acting upstream of AreA and regulating its nuclear translocation are unknown. In Saccharomyces cerevisiae, the target of rapamycin (TOR) proteins, Tor1p and Tor2p, are key players of nutrient-mediated signal transduction to control cell growth. In filamentous fungi, probably only one TOR kinase-encoding gene exists. However, nothing is known about its function. Therefore, we investigated the role of TOR in the GA-producing fungus F. fujikuroi in order to determine whether TOR plays a role in nitrogen regulation, especially in the regulation of GA and bikaverin biosynthesis. We cloned and characterized the F. fujikuroi tor gene. However, we were not able to create knockout mutants, suggesting that TOR is essential for viability. Inhibition of TOR by rapamycin affected the expression of AreA-controlled secondary metabolite genes for GA and bikaverin biosynthesis, as well as genes involved in transcriptional and translational regulation, ribosome biogenesis, and autophagy. Deletion of fpr1 encoding the FKBP12-homologue confirmed that the effects of rapamycin are due to the specific inhibition of TOR. Interestingly, the expression of most of the TOR target genes has been previously shown to be also affected in the glutamine synthetase mutant, although in the opposite way. We demonstrate here for the first time in a filamentous fungus that the TOR kinase is involved in nitrogen regulation of secondary metabolism and that rapamycin affects also the expression of genes involved in translation control, ribosome biogenesis, carbon metabolism, and autophagy.


Asunto(s)
Fusarium/enzimología , Nitrógeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Clonación Molecular , Regulación hacia Abajo/genética , Etiquetas de Secuencia Expresada , Fusarium/citología , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Esenciales/genética , Genes Fúngicos/genética , Vectores Genéticos , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Análisis de Secuencia de ADN , Sirolimus/farmacología , Proteína 1A de Unión a Tacrolimus/metabolismo , Regulación hacia Arriba/genética
4.
Mol Microbiol ; 53(1): 263-73, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15225320

RESUMEN

Certain strains of Pichia acaciae and Wingea robertsiae (synonym Debaryomyces robertsiae) harbour extranuclear genetic elements that confer a killer phenotype to their host. Such killer plasmids (pPac1-2 of P. acaciae and pWR1A of W. robertsiae) were sequenced and compared with the zymocin encoding pGKL1 of Kluyveromyces lactis. Both new elements were found to be closely related to each other, but they are only partly similar to pGKL1. As for the latter, they encode functions mediating binding of the toxin to the target cell's chitin and a hydrophobic region potentially involved in uptake of a toxin subunit by target cells. Consistently, mutations affecting the target cell's major chitin synthase (Chs3) protect it from toxin action. Heterologous intracellular expression of respective open reading frames identified cell cycle-arresting toxin subunits deviating structurally from the likewise imported gamma-subunit of the K. lactis zymocin. Accordingly, toxicity of both P. acaciae and Wingea toxins was shown to be independent of RNA polymerase II Elongator, which is indispensable for zymocin action. Thus, P. acaciae and Wingea toxins differ in their mode of action from the G1-arresting zymocin. Fluorescence-activated cell sorting analysis and determination of budding indices have proved that such novel toxins mediate cell cycle arrest post-G1 during the S phase. Concomitantly, the DNA damage checkpoint kinase Rad53 is phosphorylated. As a mutant carrying the checkpoint-deficient allele rad53-11 displays toxin hypersensitivity, damage checkpoint activation apparently contributes to coping with toxin stress, rather than being functionally implemented in toxin action.


Asunto(s)
Daño del ADN/efectos de los fármacos , Micotoxinas/farmacología , Fase S/efectos de los fármacos , Levaduras/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Factores Asesinos de Levadura , Kluyveromyces/química , Micotoxinas/química , Pichia/química , Levaduras/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...