Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-30838207

RESUMEN

The development of new genetic modification techniques (nGMs), also referred to as "new (breeding) techniques" in other sources, has raised worldwide discussions regarding their regulation. Different existing regulatory frameworks for genetically modified organisms (GMO) cover nGMs to varying degrees. Coverage of nGMs depends mostly on the regulatory trigger. In general two different trigger systems can be distinguished, taking into account either the process applied during development or the characteristics of the resulting product. A key question is whether regulatory frameworks either based on process- or product-oriented triggers are more advantageous for the regulation of nGM applications. We analyzed regulatory frameworks for GMO from different countries covering both trigger systems with a focus on their applicability to plants developed by various nGMs. The study is based on a literature analysis and qualitative interviews with regulatory experts and risk assessors of GMO in the respective countries. The applied principles of risk assessment are very similar in all investigated countries independent of the applied trigger for regulation. Even though the regulatory trigger is either process- or product-oriented, both triggers systems show features of the respective other in practice. In addition our analysis shows that both trigger systems have a number of generic advantages and disadvantages, but neither system can be regarded as superior at a general level. More decisive for the regulation of organisms or products, especially nGM applications, are the variable criteria and exceptions used to implement the triggers in the different regulatory frameworks. There are discussions and consultations in some countries about whether changes in legislation are necessary to establish a desired level of regulation of nGMs. We identified five strategies for countries that desire to regulate nGM applications for biosafety-ranging from applying existing biosafety frameworks without further amendments to establishing new stand-alone legislation. Due to varying degrees of nGM regulation, international harmonization will supposedly not be achieved in the near future. In the context of international trade, transparency of the regulatory status of individual nGM products is a crucial issue. We therefore propose to introduce an international public registry listing all biotechnology products commercially used in agriculture.

2.
Environ Sci Eur ; 30(1): 38, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30370193

RESUMEN

BACKGROUND: Few suitable and standardized test methods are currently available to test the effects of genetically modified plants (GMP) on non-target organisms. To fill this gap and improve ecotoxicological testing for GMP, we developed a new soil ecotoxicological test method using sciarid larvae as test organisms. RESULTS: Bradysia impatiens was identified as a candidate species. Species of the genus Bradysia occur in high numbers in European agroecosystems and B. impatiens can be reared in the laboratory in continuous culture. A functional basic test design was successfully developed. Newly hatched larvae were used as the initial life stage to cover most of the life cycle of the species during the test. Azadirachtin was identified as a suitable reference substance. In several tests, the effects of this substance on development time and emergence rate varied for different temperatures and test substrates. The toxicity was higher at 25 °C compared to 20 °C and in tropical artificial soil compared to coconut fiber substrate. CONCLUSIONS AND OUTLOOK: Results suggest that the developed test system is suitable to enter a full standardization process, e.g., via the Organisation for Economic Co-operation and Development. Such a standardization would not only assist the risk assessment of GMP, but could include other stressors such as systemic pesticides or veterinary pharmaceuticals reaching the soil, e.g., via spreading manure. The use of sciarid flies as test organisms supports recommendations of EFSA, which stressed the ecological role of flies and encouraged including Diptera into test batteries.

3.
Environ Toxicol Chem ; 32(8): 1688-700, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23637092

RESUMEN

Use of glyphosate-based herbicides is increasing worldwide. The authors review the available data related to potential impacts of these herbicides on amphibians and conduct a qualitative meta-analysis. Because little is known about environmental concentrations of glyphosate in amphibian habitats and virtually nothing is known about environmental concentrations of the substances added to the herbicide formulations that mainly contribute to adverse effects, glyphosate levels can only be seen as approximations for contamination with glyphosate-based herbicides. The impact on amphibians depends on the herbicide formulation, with different sensitivity of taxa and life stages. Effects on development of larvae apparently are the most sensitive endpoints to study. As with other contaminants, costressors mainly increase adverse effects. If and how glyphosate-based herbicides and other pesticides contribute to amphibian decline is not answerable yet due to missing data on how natural populations are affected. Amphibian risk assessment can only be conducted case-specifically, with consideration of the particular herbicide formulation. The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration.


Asunto(s)
Contaminantes Ambientales/toxicidad , Glicina/análogos & derivados , Herbicidas/toxicidad , Anfibios , Animales , Ecosistema , Glicina/toxicidad , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Medición de Riesgo , Glifosato
4.
Integr Environ Assess Manag ; 6(2): 287-300, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19694493

RESUMEN

Before a genetically modified plant (GMP) can be placed on the market in the European Union (EU), an environmental risk assessment has to be conducted according to EU-Directive 2001/18/EC or Regulation (EC) No. 1829/2003 of the European Parliament and of the Council. However, no harmonized concept for ecotoxicological testing is available today that considers the characteristics of GMPs as a whole. In fact, to date, mainly ecotoxicological tests originally developed and standardized for pesticides are used for this purpose. Frequently in these tests, not the whole GMP is tested but only specific transgene products (mainly toxins). In this contribution, ecotoxicological methods developed for the testing of pesticides are evaluated for whether they are suitable for risk assessment of GMPs as well. In total, 105 test methods covering a wide range of terrestrial invertebrates, microbes, and plants (laboratory, semifield, and field levels) were assessed. Only 7 of them had already been used with GMPs, and in about 20 studies the existing tests methods were modified, mostly in a way such that nonstandard species were used. In the laboratory, few earthworm and nontarget arthropod (NTA) species as well as collembolans and isopods were tested, and, in the field, only the litter-bag test was used. Clearly, more species than these few standard organisms currently in use have to be selected for testing purposes. A more detailed analysis of GMP tests with soil invertebrates published in the literature revealed that some of the relevant GMP exposure routes, such as via bulk soil, soil porewater, and litter from GMPs, are well covered. However, studies addressing either consumption of GMPs themselves or secondary exposure after GMPs have been taken up by invertebrates that feed on living or dead GMPs are underrepresented.


Asunto(s)
Ecotoxicología/métodos , Ambiente , Plantas/efectos adversos , Plantas/genética , Suelo , Pruebas de Toxicidad/métodos , Animales , Ecotoxicología/legislación & jurisprudencia , Ecotoxicología/normas , Unión Europea , Estudios de Factibilidad , Plaguicidas/toxicidad , Plantas Modificadas Genéticamente , Medición de Riesgo , Pruebas de Toxicidad/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...