Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Nat Microbiol ; 9(5): 1293-1311, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38622380

RESUMEN

Children infected with SARS-CoV-2 rarely progress to respiratory failure. However, the risk of mortality in infected people over 85 years of age remains high. Here we investigate differences in the cellular landscape and function of paediatric (<12 years), adult (30-50 years) and older adult (>70 years) ex vivo cultured nasal epithelial cells in response to infection with SARS-CoV-2. We show that cell tropism of SARS-CoV-2, and expression of ACE2 and TMPRSS2 in nasal epithelial cell subtypes, differ between age groups. While ciliated cells are viral replication centres across all age groups, a distinct goblet inflammatory subtype emerges in infected paediatric cultures and shows high expression of interferon-stimulated genes and incomplete viral replication. In contrast, older adult cultures infected with SARS-CoV-2 show a proportional increase in basaloid-like cells, which facilitate viral spread and are associated with altered epithelial repair pathways. We confirm age-specific induction of these cell types by integrating data from in vivo COVID-19 studies and validate that our in vitro model recapitulates early epithelial responses to SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Células Epiteliales , Mucosa Nasal , SARS-CoV-2 , Serina Endopeptidasas , Humanos , COVID-19/virología , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Adulto , Persona de Mediana Edad , Anciano , Células Epiteliales/virología , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Mucosa Nasal/virología , Niño , Factores de Edad , Replicación Viral , Preescolar , Tropismo Viral , Masculino , Femenino , Anciano de 80 o más Años , Células Cultivadas , Adolescente , Lactante
2.
Artículo en Inglés | MEDLINE | ID: mdl-38654090

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as non-alcoholic fatty liver disease) is a leading cause of chronic liver disease worldwide. MASLD can progress to metabolic dysfunction-associated steatohepatitis (MASH, formerly known as non-alcoholic steatohepatitis) with subsequent liver cirrhosis and hepatocellular carcinoma formation. The advent of current technologies such as single-cell and single-nuclei RNA sequencing have transformed our understanding of the liver in homeostasis and disease. The next frontier is contextualizing this single-cell information in its native spatial orientation. This understanding will markedly accelerate discovery science in hepatology, resulting in a further step-change in our knowledge of liver biology and pathobiology. In this Review, we discuss up-to-date knowledge of MASLD development and progression and how the burgeoning field of spatial genomics is driving exciting new developments in our understanding of human liver disease pathogenesis and therapeutic target identification.

3.
Nat Aging ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622407

RESUMEN

Skeletal muscle aging is a key contributor to age-related frailty and sarcopenia with substantial implications for global health. Here we profiled 90,902 single cells and 92,259 single nuclei from 17 donors to map the aging process in the adult human intercostal muscle, identifying cellular changes in each muscle compartment. We found that distinct subsets of muscle stem cells exhibit decreased ribosome biogenesis genes and increased CCL2 expression, causing different aging phenotypes. Our atlas also highlights an expansion of nuclei associated with the neuromuscular junction, which may reflect re-innervation, and outlines how the loss of fast-twitch myofibers is mitigated through regeneration and upregulation of fast-type markers in slow-twitch myofibers with age. Furthermore, we document the function of aging muscle microenvironment in immune cell attraction. Overall, we present a comprehensive human skeletal muscle aging resource ( https://www.muscleageingcellatlas.org/ ) together with an in-house mouse muscle atlas to study common features of muscle aging across species.

4.
Nature ; 628(8009): 854-862, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570678

RESUMEN

The intestinal immune system is highly adapted to maintaining tolerance to the commensal microbiota and self-antigens while defending against invading pathogens1,2. Recognizing how the diverse network of local cells establish homeostasis and maintains it in the complex immune environment of the gut is critical to understanding how tolerance can be re-established following dysfunction, such as in inflammatory disorders. Although cell and molecular interactions that control T regulatory (Treg) cell development and function have been identified3,4, less is known about the cellular neighbourhoods and spatial compartmentalization that shapes microorganism-reactive Treg cell function. Here we used in vivo live imaging, photo-activation-guided single-cell RNA sequencing5-7 and spatial transcriptomics to follow the natural history of T cells that are reactive towards Helicobacter hepaticus through space and time in the settings of tolerance and inflammation. Although antigen stimulation can occur anywhere in the tissue, the lamina propria-but not embedded lymphoid aggregates-is the key microniche that supports effector Treg (eTreg) cell function. eTreg cells are stable once their niche is established; however, unleashing inflammation breaks down compartmentalization, leading to dominance of CD103+SIRPα+ dendritic cells in the lamina propria. We identify and validate the putative tolerogenic interaction between CD206+ macrophages and eTreg cells in the lamina propria and identify receptor-ligand pairs that are likely to govern the interaction. Our results reveal a spatial mechanism of tolerance in the lamina propria and demonstrate how knowledge of local interactions may contribute to the next generation of tolerance-inducing therapies.


Asunto(s)
Mucosa Intestinal , Membrana Mucosa , Linfocitos T Reguladores , Animales , Femenino , Masculino , Ratones , Antígenos CD/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Perfilación de la Expresión Génica , Helicobacter hepaticus/inmunología , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/microbiología , Tolerancia Inmunológica/inmunología , Inflamación/inmunología , Inflamación/microbiología , Inflamación/patología , Cadenas alfa de Integrinas/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Membrana Mucosa/citología , Membrana Mucosa/inmunología , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/inmunología , Análisis de Expresión Génica de una Sola Célula , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/citología , Transcriptoma
5.
Nat Methods ; 21(3): 391-400, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38374264

RESUMEN

Deciphering cell-type heterogeneity is crucial for systematically understanding tissue homeostasis and its dysregulation in diseases. Computational deconvolution is an efficient approach for estimating cell-type abundances from a variety of omics data. Despite substantial methodological progress in computational deconvolution in recent years, challenges are still outstanding. Here we enlist four important challenges related to computational deconvolution: the quality of the reference data, generation of ground truth data, limitations of computational methodologies, and benchmarking design and implementation. Finally, we make recommendations on reference data generation, new directions of computational methodologies, and strategies to promote rigorous benchmarking.


Asunto(s)
Biología Computacional , Genómica , Biología Computacional/métodos , Benchmarking
6.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260588

RESUMEN

The immune system comprises multiple cell lineages and heterogeneous subsets found in blood and tissues throughout the body. While human immune responses differ between sites and over age, the underlying sources of variation remain unclear as most studies are limited to peripheral blood. Here, we took a systems approach to comprehensively profile RNA and surface protein expression of over 1.25 million immune cells isolated from blood, lymphoid organs, and mucosal tissues of 24 organ donors aged 20-75 years. We applied a multimodal classifier to annotate the major immune cell lineages (T cells, B cells, innate lymphoid cells, and myeloid cells) and their corresponding subsets across the body, leveraging probabilistic modeling to define bases for immune variations across donors, tissue, and age. We identified dominant tissue-specific effects on immune cell composition and function across lineages for lymphoid sites, intestines, and blood-rich tissues. Age-associated effects were intrinsic to both lineage and site as manifested by macrophages in mucosal sites, B cells in lymphoid organs, and T and NK cells in blood-rich sites. Our results reveal tissue-specific signatures of immune homeostasis throughout the body and across different ages. This information provides a basis for defining the transcriptional underpinnings of immune variation and potential associations with disease-associated immune pathologies across the human lifespan.

7.
Genome Med ; 16(1): 8, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195504

RESUMEN

BACKGROUND: As normal cells transform into cancers, their cell state changes, which may drive cancer cells into a stem-like or more primordial, foetal, or embryonic cell state. The transcriptomic profile of this final state may encode information about cancer's origin and how cancers relate to their normal cell counterparts. METHODS: Here, we used single-cell atlases to study cancer transformation in transcriptional terms. We utilised bulk transcriptomes across a wide spectrum of adult and childhood cancers, using a previously established method to interrogate their relationship to normal cell states. We extend and validate these findings using single-cell cancer transcriptomes and organ-specific atlases of colorectal and liver cancer. RESULTS: Our bulk transcriptomic data reveals that adult cancers rarely return to an embryonic state, but that a foetal state is a near-universal feature of childhood cancers. This finding was confirmed with single-cell cancer transcriptomes. CONCLUSIONS: Our findings provide a nuanced picture of transformation in human cancer, indicating cancer-specific rather than universal patterns of transformation pervade adult epithelial cancers.


Asunto(s)
Neoplasias Hepáticas , Adulto , Humanos , Neoplasias Hepáticas/genética , Desarrollo Embrionario , Feto , Perfilación de la Expresión Génica , Transcriptoma
8.
Nat Cell Biol ; 26(2): 172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38263275
9.
Proc Natl Acad Sci U S A ; 121(2): e2313326120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165934

RESUMEN

Our understanding of how human skin cells differ according to anatomical site and tumour formation is limited. To address this, we have created a multiscale spatial atlas of healthy skin and basal cell carcinoma (BCC), incorporating in vivo optical coherence tomography, single-cell RNA sequencing, spatial global transcriptional profiling, and in situ sequencing. Computational spatial deconvolution and projection revealed the localisation of distinct cell populations to specific tissue contexts. Although cell populations were conserved between healthy anatomical sites and in BCC, mesenchymal cell populations including fibroblasts and pericytes retained signatures of developmental origin. Spatial profiling and in silico lineage tracing support a hair follicle origin for BCC and demonstrate that cancer-associated fibroblasts are an expansion of a POSTN+ subpopulation associated with hair follicles in healthy skin. RGS5+ pericytes are also expanded in BCC suggesting a role in vascular remodelling. We propose that the identity of mesenchymal cell populations is regulated by signals emanating from adjacent structures and that these signals are repurposed to promote the expansion of skin cancer stroma. The resource we have created is publicly available in an interactive format for the research community.


Asunto(s)
Carcinoma Basocelular , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/patología , Piel/patología , Folículo Piloso
10.
Nat Biotechnol ; 42(1): 40-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37055623

RESUMEN

Assessment of single-cell gene expression (single-cell RNA sequencing) and adaptive immune receptor (AIR) sequencing (scVDJ-seq) has been invaluable in studying lymphocyte biology. Here we introduce Dandelion, a computational pipeline for scVDJ-seq analysis. It enables the application of standard V(D)J analysis workflows to single-cell datasets, delivering improved V(D)J contig annotation and the identification of nonproductive and partially spliced contigs. We devised a strategy to create an AIR feature space that can be used for both differential V(D)J usage analysis and pseudotime trajectory inference. The application of Dandelion improved the alignment of human thymic development trajectories of double-positive T cells to mature single-positive CD4/CD8 T cells, generating predictions of factors regulating lineage commitment. Dandelion analysis of other cell compartments provided insights into the origins of human B1 cells and ILC/NK cell development, illustrating the power of our approach. Dandelion is available at https://www.github.com/zktuong/dandelion .


Asunto(s)
Taraxacum , Humanos , Linfocitos T , Análisis de la Célula Individual
11.
Nat Methods ; 20(12): 1849-1851, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38057509
12.
Nature ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057666

RESUMEN

Human limbs emerge during the fourth post-conception week as mesenchymal buds, which develop into fully formed limbs over the subsequent months1. This process is orchestrated by numerous temporally and spatially restricted gene expression programmes, making congenital alterations in phenotype common2. Decades of work with model organisms have defined the fundamental mechanisms underlying vertebrate limb development, but an in-depth characterization of this process in humans has yet to be performed. Here we detail human embryonic limb development across space and time using single-cell and spatial transcriptomics. We demonstrate extensive diversification of cells from a few multipotent progenitors to myriad differentiated cell states, including several novel cell populations. We uncover two waves of human muscle development, each characterized by different cell states regulated by separate gene expression programmes, and identify musculin (MSC) as a key transcriptional repressor maintaining muscle stem cell identity. Through assembly of multiple anatomically continuous spatial transcriptomic samples using VisiumStitcher, we map cells across a sagittal section of a whole fetal hindlimb. We reveal a clear anatomical segregation between genes linked to brachydactyly and polysyndactyly, and uncover transcriptionally and spatially distinct populations of the mesenchyme in the autopod. Finally, we perform single-cell RNA sequencing on mouse embryonic limbs to facilitate cross-species developmental comparison, finding substantial homology between the two species.

13.
Sci Immunol ; 8(90): eadf9988, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100545

RESUMEN

Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1ß drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1ß-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.


Asunto(s)
Inmunidad Innata , Pulmón , Humanos , Diferenciación Celular , Células Asesinas Naturales , Células Epiteliales
14.
Cell ; 186(26): 5876-5891.e20, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38134877

RESUMEN

Harmonizing cell types across the single-cell community and assembling them into a common framework is central to building a standardized Human Cell Atlas. Here, we present CellHint, a predictive clustering tree-based tool to resolve cell-type differences in annotation resolution and technical biases across datasets. CellHint accurately quantifies cell-cell transcriptomic similarities and places cell types into a relationship graph that hierarchically defines shared and unique cell subtypes. Application to multiple immune datasets recapitulates expert-curated annotations. CellHint also reveals underexplored relationships between healthy and diseased lung cell states in eight diseases. Furthermore, we present a workflow for fast cross-dataset integration guided by harmonized cell types and cell hierarchy, which uncovers underappreciated cell types in adult human hippocampus. Finally, we apply CellHint to 12 tissues from 38 datasets, providing a deeply curated cross-tissue database with ∼3.7 million cells and various machine learning models for automatic cell annotation across human tissues.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Bases de Datos Factuales , Análisis de la Célula Individual
15.
Front Immunol ; 14: 1229703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022565

RESUMEN

Pregnenolone (P5) is synthesized as the first bioactive steroid in the mitochondria from cholesterol. Clusters of differentiation 4 (CD4+) and Clusters of differentiation 8 (CD8+) immune cells synthesize P5 de novo; P5, in turn, play important role in immune homeostasis and regulation. However, P5's biochemical mode of action in immune cells is still emerging. We envisage that revealing the complete spectrum of P5 target proteins in immune cells would have multifold applications, not only in basic understanding of steroids biochemistry in immune cells but also in developing new therapeutic applications. We employed a CLICK-enabled probe to capture P5-binding proteins in live T helper cell type 2 (Th2) cells. Subsequently, using high-throughput quantitative proteomics, we identified the P5 interactome in CD4+ Th2 cells. Our study revealed P5's mode of action in CD4+ immune cells. We identified novel proteins from mitochondrial and endoplasmic reticulum membranes to be the primary mediators of P5's biochemistry in CD4+ and to concur with our earlier finding in CD8+ immune cells. Applying advanced computational algorithms and molecular simulations, we were able to generate near-native maps of P5-protein key molecular interactions. We showed bonds and interactions between key amino acids and P5, which revealed the importance of ionic bond, hydrophobic interactions, and water channels. We point out that our results can lead to designing of novel molecular therapeutics strategies.


Asunto(s)
Pregnenolona , Células Th2 , Pregnenolona/metabolismo , Pregnenolona/farmacología , Células Th2/metabolismo , Simulación de Dinámica Molecular , Esteroides , Proteínas Portadoras/metabolismo
16.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37986877

RESUMEN

T cells develop from circulating precursors, which enter the thymus and migrate throughout specialised sub-compartments to support maturation and selection. This process starts already in early fetal development and is highly active until the involution of the thymus in adolescence. To map the micro-anatomical underpinnings of this process in pre- vs. post-natal states, we undertook a spatially resolved analysis and established a new quantitative morphological framework for the thymus, the Cortico-Medullary Axis. Using this axis in conjunction with the curation of a multimodal single-cell, spatial transcriptomics and high-resolution multiplex imaging atlas, we show that canonical thymocyte trajectories and thymic epithelial cells are highly organised and fully established by post-conception week 12, pinpoint TEC progenitor states, find that TEC subsets and peripheral tissue genes are associated with Hassall's Corpuscles and uncover divergence in the pace and drivers of medullary entry between CD4 vs. CD8 T cell lineages. These findings are complemented with a holistic toolkit for spatial analysis and annotation, providing a basis for a detailed understanding of T lymphocyte development.

17.
J Mol Biol ; 435(24): 168355, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37935256

RESUMEN

Histones and transcription factors (TFs) are two important DNA-binding proteins that interact, compete, and together regulate transcriptional processes in response to diverse internal and external stimuli. Condition-specific depletion of histones in Saccharomyces cerevisiae using a galactose-inducible H3 promoter provides a suitable framework for examining transcriptional alteration resulting from reduced nucleosome content. However, the effect on DNA binding activities of TFs is yet to be fully explored. In this work, we combine ChIP-seq of H3 with RNA-seq to elucidate the genome-scale relationships between H3 occupancy patterns and transcriptional dynamics before and after global H3 depletion. ChIP-seq of Rap1 is also conducted in the H3-depletion and control treatments, to investigate the interplay between this master regulator TF and nucleosomal H3, and to explore the impact on diverse transcriptional responses of different groups of target genes and functions. Ultimately, we propose a working model and testable hypotheses regarding the impact of global and local H3 depletion on transcriptional changes. We also demonstrate different potential modes of interaction between Rap1 and H3, which sheds light on the potential multifunctional regulatory capabilities of Rap1 and potentially other pioneer factors.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo
18.
Nat Genet ; 55(11): 1998-2008, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37828140

RESUMEN

Joint analysis of single-cell genomics data from diseased tissues and a healthy reference can reveal altered cell states. We investigate whether integrated collections of data from healthy individuals (cell atlases) are suitable references for disease-state identification and whether matched control samples are needed to minimize false discoveries. We demonstrate that using a reference atlas for latent space learning followed by differential analysis against matched controls leads to improved identification of disease-associated cells, especially with multiple perturbed cell types. Additionally, when an atlas is available, reducing control sample numbers does not increase false discovery rates. Jointly analyzing data from a COVID-19 cohort and a blood cell atlas, we improve detection of infection-related cell states linked to distinct clinical severities. Similarly, we studied disease states in pulmonary fibrosis using a healthy lung atlas, characterizing two distinct aberrant basal states. Our analysis provides guidelines for designing disease cohort studies and optimizing cell atlas use.


Asunto(s)
Genómica , Fibrosis Pulmonar , Humanos , Análisis de la Célula Individual
19.
PLoS Biol ; 21(9): e3002267, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37669250

RESUMEN

Science does not take place in a vacuum: The physical and social workplace has a profound influence on scientific discoveries. Everyone at a research institute can contribute to its scientific output and productivity, from faculty research groups to facilities and platforms staff to administration and corporate services. Although the researchers addressing exciting scientific questions are key, their efforts can be fostered and directed by the overarching strategy of the institute, interconnection with facilities and platforms, and strong and directed support of the administration and corporate services. Everybody counts and everybody should be empowered to contribute. But what are the characteristics that make scientific organizations and their people flourish? This Essay looks at the structure and culture of successful research institutes, laying out different operational strategies and highlighting points that need be taken into consideration during their implementation.


Asunto(s)
Academias e Institutos , Docentes , Humanos , Investigadores , Lugar de Trabajo
20.
Science ; 381(6664): 1284-1285, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37725046
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...