Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Epigenetics ; 16(1): 50, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561804

RESUMEN

BACKGROUND: Nucleosome repositioning in cancer is believed to cause many changes in genome organisation and gene expression. Understanding these changes is important to elucidate fundamental aspects of cancer. It is also important for medical diagnostics based on cell-free DNA (cfDNA), which originates from genomic DNA regions protected from digestion by nucleosomes. RESULTS: We have generated high-resolution nucleosome maps in paired tumour and normal tissues from the same breast cancer patients using MNase-assisted histone H3 ChIP-seq and compared them with the corresponding cfDNA from blood plasma. This analysis has detected single-nucleosome repositioning at key regulatory regions in a patient-specific manner and common cancer-specific patterns across patients. The nucleosomes gained in tumour versus normal tissue were particularly informative of cancer pathways, with ~ 20-fold enrichment at CpG islands, a large fraction of which marked promoters of genes encoding DNA-binding proteins. The tumour tissues were characterised by a 5-10 bp decrease in the average distance between nucleosomes (nucleosome repeat length, NRL), which is qualitatively similar to the differences between pluripotent and differentiated cells. This effect was correlated with gene activity, differential DNA methylation and changes in local occupancy of linker histone variants H1.4 and H1X. CONCLUSIONS: Our study offers a novel resource of high-resolution nucleosome maps in breast cancer patients and reports for the first time the effect of systematic decrease of NRL in paired tumour versus normal breast tissues from the same patient. Our findings provide a new mechanistic understanding of nucleosome repositioning in tumour tissues that can be valuable for patient diagnostics, stratification and monitoring.


Asunto(s)
Neoplasias de la Mama , Ácidos Nucleicos Libres de Células , Humanos , Femenino , Nucleosomas/genética , Neoplasias de la Mama/genética , Metilación de ADN , Histonas/genética , Histonas/metabolismo , ADN/metabolismo , Ácidos Nucleicos Libres de Células/metabolismo , Cromatina
2.
Aging Cell ; 23(5): e14100, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38337183

RESUMEN

Aging induces systematic changes in the distribution of nucleosomes, which affect gene expression programs. Here we reconstructed nucleosome maps based on cell-free DNA (cfDNA) extracted from blood plasma using four cohorts of people of different ages. We show that nucleosomes tend to be separated by larger genomic distances in older people, and age correlates with the nucleosome repeat length (NRL). Furthermore, we developed the first aging clock based on cfDNA nucleosomics. Machine learning based on cfDNA distance distributions allowed predicting person's age with the median absolute error of 3-3.5 years.


Asunto(s)
Envejecimiento , Ácidos Nucleicos Libres de Células , Nucleosomas , Nucleosomas/metabolismo , Nucleosomas/genética , Humanos , Envejecimiento/genética , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética , Anciano , Anciano de 80 o más Años , Persona de Mediana Edad , Masculino , Femenino , Adulto
3.
Elife ; 122024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38293962

RESUMEN

Wrapping of DNA into nucleosomes restricts accessibility to DNA and may affect the recognition of binding motifs by transcription factors. A certain class of transcription factors, the pioneer transcription factors, can specifically recognize their DNA binding sites on nucleosomes, initiate local chromatin opening, and facilitate the binding of co-factors in a cell-type-specific manner. For the majority of human pioneer transcription factors, the locations of their binding sites, mechanisms of binding, and regulation remain unknown. We have developed a computational method to predict the cell-type-specific ability of transcription factors to bind nucleosomes by integrating ChIP-seq, MNase-seq, and DNase-seq data with details of nucleosome structure. We have demonstrated the ability of our approach in discriminating pioneer from canonical transcription factors and predicted new potential pioneer transcription factors in H1, K562, HepG2, and HeLa-S3 cell lines. Last, we systematically analyzed the interaction modes between various pioneer transcription factors and detected several clusters of distinctive binding sites on nucleosomal DNA.


Asunto(s)
Nucleosomas , Factores de Transcripción , Humanos , Nucleosomas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina , ADN/metabolismo , Sitios de Unión
4.
Genome Res ; 33(10): 1649-1661, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37699659

RESUMEN

The location of nucleosomes in the human genome determines the primary chromatin structure and regulates access to regulatory regions. However, genome-wide information on deregulated nucleosome occupancy and its implications in primary cancer cells is scarce. Here, we conducted a genome-wide comparison of high-resolution nucleosome maps in peripheral blood B cells from patients with chronic lymphocytic leukemia (CLL) and healthy individuals at single-base-pair resolution. Our investigation uncovered significant changes of nucleosome positioning in CLL. Globally, the spacing between nucleosomes-the nucleosome repeat length (NRL)-is shortened in CLL. This effect is stronger in the more aggressive IGHV-unmutated CLL subtype than in the IGHV-mutated CLL subtype. Changes in nucleosome occupancy at specific sites are linked to active chromatin remodeling and reduced DNA methylation. Nucleosomes lost or gained in CLL marks differential binding of 3D chromatin organizers such as CTCF as well as immune response-related transcription factors and delineated mechanisms of epigenetic deregulation. The principal component analysis of nucleosome occupancy in cancer-specific regions allowed the classification of samples between cancer subtypes and normal controls. Furthermore, patients could be better assigned to CLL subtypes according to differential nucleosome occupancy than based on DNA methylation or gene expression. Thus, nucleosome positioning constitutes a novel readout to dissect molecular mechanisms of disease progression and to stratify patients. Furthermore, we anticipate that the global nucleosome repositioning detected in our study, such as changes in the NRL, can be exploited for liquid biopsy applications based on cell-free DNA to stratify patients and monitor disease progression.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Nucleosomas , Humanos , Nucleosomas/genética , Leucemia Linfocítica Crónica de Células B/genética , Cromatina , Factores de Transcripción/metabolismo , Progresión de la Enfermedad
5.
bioRxiv ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37425841

RESUMEN

Wrapping of DNA into nucleosomes restricts accessibility to the DNA and may affect the recognition of binding motifs by transcription factors. A certain class of transcription factors, the pioneer transcription factors, can specifically recognize their DNA binding sites on nucleosomes, may initiate local chromatin opening and facilitate the binding of co-factors in a cell-type-specific manner. For the majority of human pioneer transcription factors, the locations of their binding sites, mechanisms of binding and regulation remain unknown. We have developed a computational method to predict the cell-type-specific ability of transcription factors to bind nucleosomes by integrating ChIP-seq, MNase-seq and DNase-seq data with details of nucleosome structure. We have demonstrated the ability of our approach in discriminating pioneer from canonical transcription factors and predicted new potential pioneer transcription factors in H1, K562, HepG2 and HeLa cell lines. Lastly, we systemically analyzed the interaction modes between various pioneer transcription factors and detected several clusters of distinctive binding sites on nucleosomal DNA.

6.
Nat Commun ; 13(1): 1861, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35387992

RESUMEN

The mammalian epigenome contains thousands of heterochromatin nanodomains (HNDs) marked by di- and trimethylation of histone H3 at lysine 9 (H3K9me2/3), which have a typical size of 3-10 nucleosomes. However, what governs HND location and extension is only partly understood. Here, we address this issue by introducing the chromatin hierarchical lattice framework (ChromHL) that predicts chromatin state patterns with single-nucleotide resolution. ChromHL is applied to analyse four HND types in mouse embryonic stem cells that are defined by histone methylases SUV39H1/2 or GLP, transcription factor ADNP or chromatin remodeller ATRX. We find that HND patterns can be computed from PAX3/9, ADNP and LINE1 sequence motifs as nucleation sites and boundaries that are determined by DNA sequence (e.g. CTCF binding sites), cooperative interactions between nucleosomes as well as nucleosome-HP1 interactions. Thus, ChromHL rationalizes how patterns of H3K9me2/3 are established and changed via the activity of protein factors in processes like cell differentiation.


Asunto(s)
Heterocromatina , Nucleosomas , Animales , Secuencia de Bases , Cromatina , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Ratones , Proteínas del Tejido Nervioso/metabolismo , Nucleosomas/genética
7.
Chromosoma ; 131(1-2): 19-28, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35061087

RESUMEN

Nucleosome positioning is involved in many gene regulatory processes happening in the cell, and it may change as cells differentiate or respond to the changing microenvironment in a healthy or diseased organism. One important implication of nucleosome positioning in clinical epigenetics is its use in the "nucleosomics" analysis of cell-free DNA (cfDNA) for the purpose of patient diagnostics in liquid biopsies. The rationale for this is that the apoptotic nucleases that digest chromatin of the dying cells mostly cut DNA between nucleosomes. Thus, the short pieces of DNA in body fluids reflect the positions of nucleosomes in the cells of origin. Here, we report a systematic nucleosomics database - NucPosDB - curating published nucleosome positioning datasets in vivo as well as datasets of sequenced cell-free DNA (cfDNA) that reflect nucleosome positioning in situ in the cells of origin. Users can select subsets of the database by a number of criteria and then obtain raw or processed data. NucPosDB also reports the originally determined regions with stable nucleosome occupancy across several individuals with a given condition. An additional section provides a catalogue of computational tools for the analysis of nucleosome positioning or cfDNA experiments and theoretical algorithms for the prediction of nucleosome positioning preferences from DNA sequence. We provide an overview of the field, describe the structure of the database in this context, and demonstrate data variability using examples of different medical conditions. NucPosDB is useful both for the analysis of fundamental gene regulation processes and the training of computational models for patient diagnostics based on cfDNA. The database currently curates ~ 400 publications on nucleosome positioning in cell lines and in situ as well as cfDNA from > 10,000 patients and healthy volunteers. For open-access cfDNA datasets as well as key MNase-seq datasets in human cells, NucPosDB allows downloading processed mapped data in addition to the regions with stable nucleosome occupancy. NucPosDB is available at https://generegulation.org/nucposdb/ .


Asunto(s)
Ácidos Nucleicos Libres de Células , Nucleosomas , Ácidos Nucleicos Libres de Células/genética , Cromatina , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Humanos , Nucleosomas/genética
8.
J R Soc Interface ; 18(179): 20210147, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34129789

RESUMEN

One of the least understood properties of chromatin is the ability of its similar regions to recognize each other through weak interactions. Theories based on electrostatic interactions between helical macromolecules suggest that the ability to recognize sequence homology is an innate property of the non-ideal helical structure of DNA. However, this theory does not account for the nucleosomal packing of DNA. Can homologous DNA sequences recognize each other while wrapped up in the nucleosomes? Can structural homology arise at the level of nucleosome arrays? Here, we present a theoretical model for the recognition potential well between chromatin fibres sliding against each other. This well is different from the one predicted for bare DNA; the minima in energy do not correspond to literal juxtaposition, but are shifted by approximately half the nucleosome repeat length. The presence of this potential well suggests that nucleosome positioning may induce mutual sequence recognition between chromatin fibres and facilitate the formation of chromatin nanodomains. This has implications for nucleosome arrays enclosed between CTCF-cohesin boundaries, which may form stiffer stem-like structures instead of flexible entropically favourable loops. We also consider switches between chromatin states, e.g. through acetylation/deacetylation of histones, and discuss nucleosome-induced recognition as a precursory stage of genetic recombination.


Asunto(s)
Cromatina , Nucleosomas , Ensamble y Desensamble de Cromatina , ADN , Histonas/metabolismo
9.
Cancer Lett ; 519: 63-77, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34171406

RESUMEN

Mesenchymal stem cells (MSCs) belong to the tumour microenvironment and have been implicated in tumour progression. We found that the number of MSCs significantly increased in tumour-burdened mice driven by Fas-threshold signalling. Consequently, MSCs lacking Fas lost their ability to induce metastasis development in a pancreatic cancer model. Mixing of MSCs with pancreatic cancer cells led to sustained production of the pro-metastatic cytokines CCL2 and IL6 by the stem cells. The levels of these cytokines were dependent on the number of MSCs, linking Fas-mediated MSC-proliferation to their capacity to promote tumour progression. Furthermore, we discovered that CCL2 and IL6 were induced by pancreatic cancer cell-derived IL1. Importantly, analysis of patient transcriptomic data revealed that high FasL expression correlates with high levels of MSC markers as well as increased IL6 and CCL2 levels in pancreatic tumours. Moreover, both FasL and CCL2 are linked to elevated levels of markers specific for monocytes known to possess further pro-metastatic activities. These results confirm our experimental findings of a FasL-MSC-IL1-CCL2/IL6 axis in pancreatic cancer and highlights the role of MSCs in tumour progression.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Transducción de Señal/fisiología , Receptor fas/metabolismo , Animales , Citocinas/metabolismo , Femenino , Células HEK293 , Células HT29 , Humanos , Células Jurkat , Células MCF-7 , Ratones , Ratones Desnudos , Monocitos/metabolismo , Monocitos/patología , Células PC-3 , Transcriptoma/fisiología , Carga Tumoral/fisiología , Microambiente Tumoral/fisiología
10.
EMBO Rep ; 22(5): e52612, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33949091

RESUMEN

Many scientists, confined to home office by COVID-19, have been gathering in online communities, which could become viable alternatives to physical meetings and conferences.


Asunto(s)
COVID-19 , Pandemias , Humanos , SARS-CoV-2
11.
Epigenetics Chromatin ; 13(1): 26, 2020 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-32505195

RESUMEN

BACKGROUND: Histone H1 is the most mobile histone in the cell nucleus. Defining the positions of H1 on chromatin in situ, therefore, represents a challenge. Immunoprecipitation of formaldehyde-fixed and sonicated chromatin, followed by DNA sequencing (xChIP-seq), is traditionally the method for mapping histones onto DNA elements. But since sonication fragmentation precedes ChIP, there is a consequent loss of information about chromatin higher-order structure. Here, we present a new method, xxChIP-seq, employing antibody binding to fixed intact in situ chromatin, followed by extensive washing, a second fixation, sonication and immunoprecipitation. The second fixation is intended to prevent the loss of specifically bound antibody during washing and subsequent sonication and to prevent antibody shifting to epitopes revealed by the sonication process. In many respects, xxChIP-seq is comparable to immunostaining microscopy, which also involves interaction of the primary antibody with fixed and permeabilized intact cells. The only epitopes displayed after immunostaining are the "exposed" epitopes, not "hidden" by the fixation of chromatin higher-order structure. Comparison of immunoprecipitated fragments between xChIP-seq versus xxChIP-seq should indicate which epitopes become inaccessible with fixation and identify their associated DNA elements. RESULTS: We determined the genomic distribution of histone variants H1.2 and H1.5 in human myeloid leukemia cells HL-60/S4 and compared their epitope exposure by both xChIP-seq and xxChIP-seq, as well as high-resolution microscopy, illustrating the influences of preserved chromatin higher-order structure in situ. We found that xChIP and xxChIP H1 signals are in general negatively correlated, with differences being more pronounced near active regulatory regions. Among the intriguing observations, we find that transcription-related regions and histone PTMs (i.e., enhancers, promoters, CpG islands, H3K4me1, H3K4me3, H3K9ac, H3K27ac and H3K36me3) exhibit significant deficiencies (depletions) in H1.2 and H1.5 xxChIP-seq reads, compared to xChIP-seq. These observations suggest the existence of in situ transcription-related chromatin higher-order structures stabilized by formaldehyde. CONCLUSION: Comparison of H1 xxChIP-seq to H1 xChIP-seq allows the development of hypotheses on the chromosomal localization of (stabilized) higher-order structure, indicated by the generation of "hidden" H1 epitopes following formaldehyde crosslinking. Changes in H1 epitope exposure surrounding averaged chromosomal binding sites or epigenetic modifications can also indicate whether these sites have chromatin higher-order structure. For example, comparison between averaged active or inactive promoter regions suggests that both regions can acquire stabilized higher-order structure with hidden H1 epitopes. However, the H1 xChIP-seq comparison cannot define their differences. Application of the xxChIP-seq versus H1 xChIP-seq method is particularly relevant to chromatin-associated proteins, such as linker histones, that play dynamic roles in establishing chromatin higher-order structure.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina/métodos , Cromatina/química , Epítopos/química , Histonas/química , Línea Celular Tumoral , Secuenciación de Inmunoprecipitación de Cromatina/normas , Islas de CpG , Epítopos/inmunología , Histonas/inmunología , Humanos , Límite de Detección , Regiones Promotoras Genéticas , Conformación Proteica
13.
Biol Open ; 9(2)2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31988093

RESUMEN

Epigenomic regulation plays a vital role in cell differentiation. The leukemic HL-60/S4 [human myeloid leukemic cell line HL-60/S4 (ATCC CRL-3306)] promyelocytic cell can be easily differentiated from its undifferentiated promyelocyte state into neutrophil- and macrophage-like cell states. In this study, we present the underlying genome and epigenome architecture of HL-60/S4 through its differentiation. We performed whole-genome bisulphite sequencing of HL-60/S4 cells and their differentiated counterparts. With the support of karyotyping, we show that HL-60/S4 maintains a stable genome throughout differentiation. Analysis of differential Cytosine-phosphate-Guanine dinucleotide methylation reveals that most methylation changes occur in the macrophage-like state. Differential methylation of promoters was associated with immune-related terms. Key immune genes, CEBPA, GFI1, MAFB and GATA1 showed differential expression and methylation. However, we observed the strongest enrichment of methylation changes in enhancers and CTCF binding sites, implying that methylation plays a major role in large-scale transcriptional reprogramming and chromatin reorganisation during differentiation. Correlation of differential expression and distal methylation with support from chromatin capture experiments allowed us to identify putative proximal and long-range enhancers for a number of immune cell differentiation genes, including CEBPA and CCNF Integrating expression data, we present a model of HL-60/S4 differentiation in relation to the wider scope of myeloid differentiation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Metilación de ADN , Epigenoma , Epigenómica , Leucemia Mieloide Aguda/genética , Biología Computacional/métodos , Islas de CpG , Elementos de Facilitación Genéticos , Epigenómica/métodos , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Células HL-60 , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas
14.
Nucleic Acids Res ; 47(21): 11181-11196, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31665434

RESUMEN

The CCCTC-binding factor (CTCF) organises the genome in 3D through DNA loops and in 1D by setting boundaries isolating different chromatin states, but these processes are not well understood. Here we investigate chromatin boundaries in mouse embryonic stem cells, defined by the regions with decreased Nucleosome Repeat Length (NRL) for ∼20 nucleosomes near CTCF sites, affecting up to 10% of the genome. We found that the nucleosome-depleted region (NDR) near CTCF is asymmetrically located >40 nucleotides 5'-upstream from the centre of CTCF motif. The strength of CTCF binding to DNA and the presence of cohesin is correlated with the decrease of NRL near CTCF, and anti-correlated with the level of asymmetry of the nucleosome array. Individual chromatin remodellers have different contributions, with Snf2h having the strongest effect on the NRL decrease near CTCF and Chd4 playing a major role in the symmetry breaking. Upon differentiation, a subset of preserved, common CTCF sites maintains asymmetric nucleosome pattern and small NRL. The sites which lost CTCF upon differentiation are characterized by nucleosome rearrangement 3'-downstream, with unchanged NDR 5'-upstream of CTCF motifs. Boundaries of topologically associated chromatin domains frequently contain several inward-oriented CTCF motifs whose effects, described above, add up synergistically.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Cromatina/química , Cromatina/metabolismo , Nucleosomas/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Diferenciación Celular/genética , Cromatina/genética , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Conformación de Ácido Nucleico , Unión Proteica
15.
Mol Syst Biol ; 15(5): e8339, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118277

RESUMEN

In chronic lymphocytic leukemia (CLL), a diverse set of genetic mutations is embedded in a deregulated epigenetic landscape that drives cancerogenesis. To elucidate the role of aberrant chromatin features, we mapped DNA methylation, seven histone modifications, nucleosome positions, chromatin accessibility, binding of EBF1 and CTCF, as well as the transcriptome of B cells from CLL patients and healthy donors. A globally increased histone deacetylase activity was detected and half of the genome comprised transcriptionally downregulated partially DNA methylated domains demarcated by CTCF CLL samples displayed a H3K4me3 redistribution and nucleosome gain at promoters as well as changes of enhancer activity and enhancer linkage to target genes. A DNA binding motif analysis identified transcription factors that gained or lost binding in CLL at sites with aberrant chromatin features. These findings were integrated into a gene regulatory enhancer containing network enriched for B-cell receptor signaling pathway components. Our study predicts novel molecular links to targets of CLL therapies and provides a valuable resource for further studies on the epigenetic contribution to the disease.


Asunto(s)
Cromatina/química , Regulación Leucémica de la Expresión Génica , Redes Reguladoras de Genes , Histonas/química , Leucemia Linfocítica Crónica de Células B/genética , Anciano , Secuencias de Aminoácidos , Sitios de Unión , Factor de Unión a CCCTC/genética , ADN/química , Metilación de ADN , Regulación hacia Abajo , Elementos de Facilitación Genéticos , Histona Desacetilasas/genética , Humanos , Persona de Mediana Edad , Regiones Promotoras Genéticas , Unión Proteica , Transactivadores/genética
16.
Genome Res ; 29(5): 750-761, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30948436

RESUMEN

Coordinated changes of DNA (de)methylation, nucleosome positioning, and chromatin binding of the architectural protein CTCF play an important role for establishing cell-type-specific chromatin states during differentiation. To elucidate molecular mechanisms that link these processes, we studied the perturbed DNA modification landscape in mouse embryonic stem cells (ESCs) carrying a double knockout (DKO) of the Tet1 and Tet2 dioxygenases. These enzymes are responsible for the conversion of 5-methylcytosine (5mC) into its hydroxymethylated (5hmC), formylated (5fC), or carboxylated (5caC) forms. We determined changes in nucleosome positioning, CTCF binding, DNA methylation, and gene expression in DKO ESCs and developed biophysical models to predict differential CTCF binding. Methylation-sensitive nucleosome repositioning accounted for a significant portion of CTCF binding loss in DKO ESCs, whereas unmethylated and nucleosome-depleted CpG islands were enriched for CTCF sites that remained occupied. A number of CTCF sites also displayed direct correlations with the CpG modification state: CTCF was preferentially lost from sites that were marked with 5hmC in wild-type (WT) cells but not from 5fC-enriched sites. In addition, we found that some CTCF sites can act as bifurcation points defining the differential methylation landscape. CTCF loss from such sites, for example, at promoters, boundaries of chromatin loops, and topologically associated domains (TADs), was correlated with DNA methylation/demethylation spreading and can be linked to down-regulation of neighboring genes. Our results reveal a hierarchical interplay between cytosine modifications, nucleosome positions, and DNA sequence that determines differential CTCF binding and regulates gene expression.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/genética , Epigénesis Genética , Células Madre Embrionarias de Ratones/enzimología , Proteínas Proto-Oncogénicas/genética , 5-Metilcitosina/química , Animales , Factor de Unión a CCCTC/metabolismo , Línea Celular , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Elementos Aisladores/genética , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/metabolismo , Nucleosomas/enzimología , Proteínas Proto-Oncogénicas/metabolismo
17.
Biochim Biophys Acta Gene Regul Mech ; 1861(8): 718-730, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29981477

RESUMEN

CTCF is an evolutionarily conserved and ubiquitously expressed architectural protein regulating a plethora of cellular functions via different molecular mechanisms. CTCF can undergo a number of post-translational modifications which change its properties and functions. One such modifications linked to cancer is poly(ADP-ribosyl)ation (PARylation). The highly PARylated CTCF form has an apparent molecular mass of 180 kDa (referred to as CTCF180), which can be distinguished from hypo- and non-PARylated CTCF with the apparent molecular mass of 130 kDa (referred to as CTCF130). The existing data accumulated so far have been mainly related to CTCF130. However, the properties of CTCF180 are not well understood despite its abundance in a number of primary tissues. In this study we performed ChIP-seq and RNA-seq analyses in human breast cells 226LDM, which display predominantly CTCF130 when proliferating, but CTCF180 upon cell cycle arrest. We observed that in the arrested cells the majority of sites lost CTCF, whereas fewer sites gained CTCF or remain bound (i.e. common sites). The classical CTCF binding motif was found in the lost and common, but not in the gained sites. The changes in CTCF occupancies in the lost and common sites were associated with increased chromatin densities and altered expression from the neighboring genes. Based on these results we propose a model integrating the CTCF130/180 transition with CTCF-DNA binding and gene expression changes. This study also issues an important cautionary note concerning the design and interpretation of any experiments using cells and tissues where CTCF180 may be present.


Asunto(s)
Mama/metabolismo , Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Expresión Génica , Poli ADP Ribosilación , Mama/efectos de los fármacos , Línea Celular , ADN/química , Femenino , Humanos , Hidroxiurea/farmacología , Nocodazol/farmacología , Nucleosomas/metabolismo , Motivos de Nucleótidos
18.
Nucleus ; 8(2): 188-204, 2017 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-28406749

RESUMEN

Cell differentiation is associated with changes in chromatin organization and gene expression. In this study, we examine chromatin structure following differentiation of the human myeloid leukemia cell line (HL-60/S4) into granulocytes with retinoic acid (RA) or into macrophage with phorbol ester (TPA). We performed ChIP-seq of histone H3 and its modifications, analyzing changes in nucleosome occupancy, nucleosome repeat length, eu-/heterochromatin redistribution and properties of epichromatin (surface chromatin adjacent to the nuclear envelope). Nucleosome positions changed genome-wide, exhibiting a specific class of alterations involving nucleosome loss in extended (∼1kb) regions, pronounced in enhancers and promoters. Genes that lost nucleosomes at their promoters showed a tendency to be upregulated. On the other hand, nucleosome gain did not show simple effects on transcript levels. The average genome-wide nucleosome repeat length (NRL) did not change significantly with differentiation. However, we detected an approximate 10 bp NRL decrease around the haematopoietic transcription factor (TF) PU.1 and the architectural protein CTCF, suggesting an effect on NRL proximal to TF binding sites. Nucleosome occupancy changed in regions associated with active promoters in differentiated cells, compared with untreated HL-60/S4 cells. Epichromatin regions revealed an increased GC content and high nucleosome density compared with surrounding chromatin. Epichromatin showed depletion of major histone modifications and revealed enrichment with PML body-associated genes. In general, chromatin changes during HL-60/S4 differentiation appeared to be more localized to regulatory regions, compared with genome-wide changes among diverse cell types studied elsewhere.


Asunto(s)
Diferenciación Celular , Histonas/metabolismo , Leucemia Mieloide/patología , Nucleosomas/metabolismo , Línea Celular Tumoral , Humanos , Regiones Promotoras Genéticas/genética
19.
BMC Genomics ; 18(1): 158, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28196481

RESUMEN

BACKGROUND: Biomedical applications of high-throughput sequencing methods generate a vast amount of data in which numerous chromatin features are mapped along the genome. The results are frequently analysed by creating binary data sets that link the presence/absence of a given feature to specific genomic loci. However, the nucleosome occupancy or chromatin accessibility landscape is essentially continuous. It is currently a challenge in the field to cope with continuous distributions of deep sequencing chromatin readouts and to integrate the different types of discrete chromatin features to reveal linkages between them. RESULTS: Here we introduce the NucTools suite of Perl scripts as well as MATLAB- and R-based visualization programs for a nucleosome-centred downstream analysis of deep sequencing data. NucTools accounts for the continuous distribution of nucleosome occupancy. It allows calculations of nucleosome occupancy profiles averaged over several replicates, comparisons of nucleosome occupancy landscapes between different experimental conditions, and the estimation of the changes of integral chromatin properties such as the nucleosome repeat length. Furthermore, NucTools facilitates the annotation of nucleosome occupancy with other chromatin features like binding of transcription factors or architectural proteins, and epigenetic marks like histone modifications or DNA methylation. The applications of NucTools are demonstrated for the comparison of several datasets for nucleosome occupancy in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). CONCLUSIONS: The typical workflows of data processing and integrative analysis with NucTools reveal information on the interplay of nucleosome positioning with other features such as for example binding of a transcription factor CTCF, regions with stable and unstable nucleosomes, and domains of large organized chromatin K9me2 modifications (LOCKs). As potential limitations and problems we discuss how inter-replicate variability of MNase-seq experiments can be addressed.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Cromatina/metabolismo , Análisis por Conglomerados , Análisis de Secuencia de ADN
20.
Brief Bioinform ; 17(5): 745-57, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26411474

RESUMEN

Nucleosome positioning is an important process required for proper genome packing and its accessibility to execute the genetic program in a cell-specific, timely manner. In the recent years hundreds of papers have been devoted to the bioinformatics, physics and biology of nucleosome positioning. The purpose of this review is to cover a practical aspect of this field, namely, to provide a guide to the multitude of nucleosome positioning resources available online. These include almost 300 experimental datasets of genome-wide nucleosome occupancy profiles determined in different cell types and more than 40 computational tools for the analysis of experimental nucleosome positioning data and prediction of intrinsic nucleosome formation probabilities from the DNA sequence. A manually curated, up to date list of these resources will be maintained at http://generegulation.info.


Asunto(s)
Nucleosomas , Secuencia de Bases , Biología Computacional , Genoma , Humanos , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...