Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486048

RESUMEN

Early-life stress has been linked to multiple neurodevelopmental and neuropsychiatric deficits. Our previous studies have linked maternal presence/absence from the nest in developing rat pups to changes in prefrontal cortex (PFC) activity. Furthermore, we have shown that these changes are modulated by serotonergic signaling. Here we test whether changes in PFC activity during early life affect the developing cortex leading to behavioral alterations in the adult. We show that inhibiting the PFC of mouse pups leads to cognitive deficits in the adult comparable to those seen following maternal separation. Moreover, we show that activating the PFC during maternal separation can prevent these behavioral deficits. To test how maternal separation affects the transcriptional profile of the PFC we performed single-nucleus RNA-sequencing. Maternal separation led to differential gene expression almost exclusively in inhibitory neurons. Among others, we found changes in GABAergic and serotonergic pathways in these interneurons. Interestingly, both maternal separation and early-life PFC inhibition led to changes in physiological responses in prefrontal activity to GABAergic and serotonergic antagonists that were similar to the responses of more immature brains. Prefrontal activation during maternal separation prevented these changes. These data point to a crucial role of PFC activity during early life in behavioral expression in adulthood.

2.
Alcohol ; 97: 1-11, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34464696

RESUMEN

In animal models that mimic human third-trimester fetal development, ethanol causes substantial cellular apoptosis in the brain, but for most brain structures, the extent of permanent neuron loss that persists into adulthood is unknown. We injected ethanol into C57BL/6J mouse pups at postnatal day 7 (P7) to model human late-gestation ethanol toxicity, and then used stereological methods to investigate adult cell numbers in several subcortical neurotransmitter systems that project extensively in the forebrain to regulate arousal states. Ethanol treatment caused especially large reductions (34-42%) in the cholinergic cells of the basal forebrain, including cholinergic cells in the medial septal/vertical diagonal band nuclei (Ch1/Ch2) and in the horizontal diagonal band/substantia innominata/nucleus basalis nuclei (Ch3/Ch4). Cell loss was also present in non-cholinergic basal forebrain cells, as demonstrated by 34% reduction of parvalbumin-immunolabeled GABA cells and 25% reduction of total Nissl-stained neurons in the Ch1/Ch2 region. In contrast, cholinergic cells in the striatum were reduced only 12% by ethanol, and those of the brainstem pedunculopontine/lateral dorsal tegmental nuclei (Ch5/Ch6) were not significantly reduced. Similarly, ethanol did not significantly reduce dopamine cells of the ventral tegmental area/substantia nigra or serotonin cells in the dorsal raphe nucleus. Orexin (hypocretin) cells in the hypothalamus showed a modest reduction (14%). Our findings indicate that the basal forebrain is especially vulnerable to alcohol exposure in the late gestational period. Reduction of cholinergic and GABAergic projection neurons from the basal forebrain that regulate forebrain arousal may contribute to the behavioral and cognitive deficits associated with neonatal ethanol exposure.


Asunto(s)
Prosencéfalo Basal , Etanol , Animales , Recuento de Células , Colina O-Acetiltransferasa/metabolismo , Colinérgicos , Etanol/toxicidad , Femenino , Ratones , Ratones Endogámicos C57BL , Embarazo
3.
Neurosci Biobehav Rev ; 128: 282-293, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34139249

RESUMEN

Serotonin is a critical neuromodulator involved in development and behavior. Its role in reward is however still debated. Here, we first review classical studies involving electrical stimulation protocols and pharmacological approaches. Contradictory results on the serotonergic' involvement in reward emerge from these studies. These differences might be ascribable to either the diversity of cellular types within the raphe nuclei or/and the specific projection pathways of serotonergic neurons. We continue to review more recent work, using optogenetic approaches to activate serotonergic cells in the Raphe to VTA pathway. From these studies, it appears that activation of this pathway can lead to reinforcement learning mediated through the excitation of dopaminergic neurons by serotonergic neurons co-transmitting glutamate. Finally, given the importance of serotonin during development on adult emotion, the effect of abnormal early-life levels of serotonin on the dopaminergic system will also be discussed. Understanding the interaction between the serotonergic and dopaminergic systems during development and adulthood is critical to gain insight into the specific facets of neuropsychiatric disorders.


Asunto(s)
Recompensa , Área Tegmental Ventral , Dopamina , Neuronas Dopaminérgicas , Serotonina
4.
J Neurosci ; 41(12): 2723-2732, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33536200

RESUMEN

Early life is a sensitive period, in which enhanced neural plasticity allows the developing brain to adapt to its environment. This plasticity can also be a risk factor in which maladaptive development can lead to long-lasting behavioral deficits. Here, we test how early-life exposure to the selective-serotonin-reuptake-inhibitor (SSRI), fluoxetine, affects motivation, and dopaminergic signaling in adulthood. We show for the first time that mice exposed to fluoxetine in the early postnatal period exhibit a reduction in effort-related motivation. These mice also show blunted responses to amphetamine and reduced dopaminergic activation in a sucrose reward task. Interestingly, we find that the reduction in motivation can be rescued in the adult by administering bupropion, a dopamine-norepinephrine reuptake inhibitor used as an antidepressant and a smoke cessation aid but not by fluoxetine. Taken together, our studies highlight the effects of early postnatal exposure of fluoxetine on motivation and demonstrate the involvement of the dopaminergic system in this process.SIGNIFICANCE STATEMENT The developmental period is characterized by enhanced plasticity. During this period, environmental factors have the potential to lead to enduring behavioral changes. Here, we show that exposure to the SSRI fluoxetine during a restricted period in early life leads to a reduction in adult motivation. We further show that this reduction is associated with decreased dopaminergic responsivity. Finally, we show that motivational deficits induced by early-life fluoxetine exposure can be rescued by adult administration of bupropion but not by fluoxetine.


Asunto(s)
Dopamina/metabolismo , Fluoxetina/farmacología , Locomoción/efectos de los fármacos , Motivación/efectos de los fármacos , Fenotipo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Animales Recién Nacidos , Femenino , Locomoción/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Microdiálisis/métodos , Motivación/fisiología
5.
J Neurosci ; 41(11): 2475-2495, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33472828

RESUMEN

The dentate gyrus (DG) of the hippocampus is important for cognition and behavior. However, the circuits underlying these functions are unclear. DG mossy cells (MCs) are potentially important because of their excitatory synapses on the primary cell type, granule cells (GCs). However, MCs also activate GABAergic neurons, which inhibit GCs. We used viral delivery of designer receptors exclusively activated by designer drugs (DREADDs) in mice to implement a gain- and loss-of-function study of MCs in diverse behaviors. Using this approach, manipulations of MCs could bidirectionally regulate behavior. The results suggest that inhibiting MCs can reduce anxiety-like behavior and improve cognitive performance. However, not all cognitive or anxiety-related behaviors were influenced, suggesting specific roles of MCs in some, but not all, types of cognition and anxiety. Notably, several behaviors showed sex-specific effects, with females often showing more pronounced effects than the males. We also used the immediate early gene c-Fos to address whether DREADDs bidirectionally regulated MC or GC activity. We confirmed excitatory DREADDs increased MC c-Fos. However, there was no change in GC c-Fos, consistent with MC activation leading to GABAergic inhibition of GCs. In contrast, inhibitory DREADDs led to a large increase in GC c-Fos, consistent with a reduction in MC excitation of GABAergic neurons, and reduced inhibition of GCs. Together, these results suggest that MCs regulate anxiety and cognition in specific ways. We also raise the possibility that cognitive performance may be improved by reducing anxiety.SIGNIFICANCE STATEMENT The dentate gyrus (DG) has many important cognitive roles as well as being associated with affective behavior. This study addressed how a glutamatergic DG cell type called mossy cells (MCs) contributes to diverse behaviors, which is timely because it is known that MCs regulate the activity of the primary DG cell type, granule cells (GCs), but how MC activity influences behavior is unclear. We show, surprisingly, that activating MCs can lead to adverse behavioral outcomes, and inhibiting MCs have an opposite effect. Importantly, the results appeared to be task-dependent and showed that testing both sexes was important. Additional experiments indicated what MC and GC circuitry was involved. Together, the results suggest how MCs influence behaviors that involve the DG.


Asunto(s)
Ansiedad/fisiopatología , Conducta Animal/fisiología , Cognición/fisiología , Giro Dentado/fisiología , Fibras Musgosas del Hipocampo/fisiología , Animales , Femenino , Masculino , Ratones
6.
Mol Psychiatry ; 26(9): 4795-4812, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32398719

RESUMEN

Serotonin and dopamine are associated with multiple psychiatric disorders. How they interact during development to affect subsequent behavior remains unknown. Knockout of the serotonin transporter or postnatal blockade with selective serotonin reuptake inhibitors (SSRIs) leads to novelty-induced exploration deficits in adulthood, potentially involving the dopamine system. Here, we show in the mouse that raphe nucleus serotonin neurons activate ventral tegmental area dopamine neurons via glutamate co-transmission and that this co-transmission is reduced in animals exposed postnatally to SSRIs. Blocking serotonin neuron glutamate co-transmission mimics this SSRI-induced hypolocomotion, while optogenetic activation of dopamine neurons reverses this hypolocomotor phenotype. Our data demonstrate that serotonin neurons modulate dopamine neuron activity via glutamate co-transmission and that this pathway is developmentally malleable, with high serotonin levels during early life reducing co-transmission, revealing the basis for the reduced novelty-induced exploration in adulthood due to postnatal SSRI exposure.


Asunto(s)
Ácido Glutámico , Área Tegmental Ventral , Animales , Neuronas Dopaminérgicas , Femenino , Ratones , Ratones Noqueados , Embarazo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
7.
Neuron ; 107(3): 552-565.e10, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32502462

RESUMEN

The occurrence of dreaming during rapid eye movement (REM) sleep prompts interest in the role of REM sleep in hippocampal-dependent episodic memory. Within the mammalian hippocampus, the dentate gyrus (DG) has the unique characteristic of exhibiting neurogenesis persisting into adulthood. Despite their small numbers and sparse activity, adult-born neurons (ABNs) in the DG play critical roles in memory; however, their memory function during sleep is unknown. Here, we investigate whether young ABN activity contributes to memory consolidation during sleep using Ca2+ imaging in freely moving mice. We found that contextual fear learning recruits a population of young ABNs that are reactivated during subsequent REM sleep against a backdrop of overall reduced ABN activity. Optogenetic silencing of this sparse ABN activity during REM sleep alters the structural remodeling of spines on ABN dendrites and impairs memory consolidation. These findings provide a causal link between ABN activity during REM sleep and memory consolidation.


Asunto(s)
Condicionamiento Psicológico , Giro Dentado/fisiología , Consolidación de la Memoria/fisiología , Neuronas/fisiología , Sueño REM/fisiología , Animales , Calcio/metabolismo , Giro Dentado/citología , Electroencefalografía , Electromiografía , Miedo , Hipocampo , Aprendizaje , Ratones , Neurogénesis , Optogenética , Ritmo Teta
8.
Mol Psychiatry ; 25(12): 3304-3321, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-30120415

RESUMEN

Serotonin (5-HT) selective reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but responsiveness is uncertain and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs reduce dopaminergic (DAergic) activity, but specific mechanistic insight is missing. Here we show in mice that SSRIs impair motor function by acting on 5-HT2C receptors in the substantia nigra pars reticulata (SNr), which in turn inhibits nigra pars compacta (SNc) DAergic neurons. SSRI-induced motor deficits can be reversed by systemic or SNr-localized 5-HT2C receptor antagonism. SSRIs induce SNr hyperactivity and SNc hypoactivity that can also be reversed by systemic 5-HT2C receptor antagonism. Optogenetic inhibition of SNc DAergic neurons mimics the motor deficits due to chronic SSRI treatment, whereas local SNr 5-HT2C receptor antagonism or optogenetic activation of SNc DAergic neurons reverse SSRI-induced motor deficits. Lastly, we find that 5-HT2C receptor antagonism potentiates the antidepressant and anxiolytic effects of SSRIs. Together our findings demonstrate opposing roles for 5-HT2C receptors in the effects of SSRIs on motor function and affective behavior, highlighting the potential benefits of 5-HT2C receptor antagonists for both reduction of motor side effects of SSRIs and augmentation of therapeutic antidepressant and anxiolytic effects.


Asunto(s)
Receptor de Serotonina 5-HT2C , Inhibidores Selectivos de la Recaptación de Serotonina , Animales , Ganglios Basales , Dopamina , Ratones , Serotonina , Sustancia Negra
9.
Brain Struct Funct ; 224(2): 961-971, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30506279

RESUMEN

A growing body of evidence shows that olfactory information is processed within a thalamic nucleus in both rodents and humans. The mediodorsal thalamic nucleus (MDT) receives projections from olfactory cortical areas including the piriform cortex (PCX) and is interconnected with the orbitofrontal cortex (OFC). Using electrophysiology in freely moving rats, we recently demonstrated the representation of olfactory information in the MDT and the dynamics of functional connectivity between the PCX, MDT and OFC. Notably, PCX-MDT coupling is specifically increased during odor sampling of an odor discrimination task. However, whether this increase of coupling is functionally relevant is unknown. To decipher the importance of PCX-MDT coupling during the sampling period, we used optogenetics to specifically inactivate the PCX inputs to MDT during an odor discrimination task and its reversal in rats. We demonstrate that inactivating the PCX inputs to MDT does not affect the performance accuracy of an odor discrimination task and its reversal, however, it does impact the rats' sampling duration. Indeed, rats in which PCX inputs to MDT were inactivated during the sampling period display longer sampling duration during the odor reversal learning compared to controls-an effect not observed when inactivating OFC inputs to MDT. We demonstrate a causal link between the PCX inputs to MDT and the odor sampling performance, highlighting the importance of this specific cortico-thalamic pathway in olfaction.


Asunto(s)
Odorantes , Corteza Olfatoria/fisiología , Vías Olfatorias/fisiología , Percepción Olfatoria/fisiología , Aprendizaje Inverso/fisiología , Tálamo/fisiología , Animales , Aprendizaje Discriminativo/fisiología , Masculino , Ratas , Ratas Long-Evans
10.
eNeuro ; 5(4)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30073196

RESUMEN

A developing brain shows intense reorganization and heightened neuronal plasticity allowing for environmental modulation of its development. During early life, maternal care is a key factor of this environment and defects in this care can derail adaptive brain development and may result in susceptibility to neuropsychiatric disorders. Nevertheless, the mechanisms by which those maternal interactions immediately impact the offspring's brain activity to initiate the pathway to pathology are not well understood. We do know that multiple neurotransmitter systems are involved, including the serotonergic system, a key neuromodulator involved in brain development and emotional regulation. We tested the importance of the serotonergic system and pups' immediate neural response to maternal presence using wireless electrophysiological recordings, a novel approach allowing us to record neural activity during pups' interactions with their mother. We found that maternal contact modulates the P10-P12 rat pups' anterior cingulate cortex (ACC) activity by notably increasing local-field potential (LFP) power in low-frequency bands. We demonstrated, by blocking serotonergic receptors, that this increase is mediated through 5-HT2 receptors (5-HT2Rs). Finally, we showed in isolated pups that enhancing serotonergic transmission, using a selective-serotonin-reuptake-inhibitor, is sufficient to enhance LFP power in low-frequency bands in a pattern similar to that observed when the mother is in the nest. Our results highlight a significant contribution of the serotonergic system in mediating changes of cortical activity in pups related to maternal presence.


Asunto(s)
Conducta Animal/fisiología , Electroencefalografía/métodos , Giro del Cíngulo/fisiología , Conducta Materna/fisiología , Potenciales de la Membrana/fisiología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiología , Receptores de Serotonina 5-HT2/metabolismo , Serotonina/metabolismo , Transducción de Señal/fisiología , Animales , Ondas Encefálicas/fisiología , Femenino , Giro del Cíngulo/metabolismo , Masculino , Corteza Prefrontal/metabolismo , Ratas , Ratas Long-Evans , Serotoninérgicos/farmacología
11.
Front Behav Neurosci ; 12: 114, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29928194

RESUMEN

Serotonin (5-HT) is one of the best-studied modulatory neurotransmitters with ubiquitous presynaptic release and postsynaptic reception. 5-HT has been implicated in a wide variety of brain functions, ranging from autonomic regulation, sensory perception, feeding and motor function to emotional regulation and cognition. The role of this neuromodulator in neuropsychiatric diseases is unquestionable with important neuropsychiatric medications, e.g., most antidepressants, targeting this system. Importantly, 5-HT modulates neurodevelopment and changes in its levels during development can have life-long consequences. In this mini-review, we highlight that exposure to both low and high serotonin levels during the perinatal period can lead to behavioral deficits in adulthood. We focus on three exogenous factors that can change 5-HT levels during the critical perinatal period: dietary tryptophan depletion, exposure to serotonin-selective-reuptake-inhibitors (SSRIs) and poor early life care. We discuss the effects of each of these on behavioral deficits in adulthood.

12.
Neuron ; 98(5): 992-1004.e4, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29754752

RESUMEN

The efficacy and duration of memory storage is regulated by neuromodulatory transmitter actions. While the modulatory transmitter serotonin (5-HT) plays an important role in implicit forms of memory in the invertebrate Aplysia, its function in explicit memory mediated by the mammalian hippocampus is less clear. Specifically, the consequences elicited by the spatio-temporal gradient of endogenous 5-HT release are not known. Here we applied optogenetic techniques in mice to gain insight into this fundamental biological process. We find that activation of serotonergic terminals in the hippocampal CA1 region both potentiates excitatory transmission at CA3-to-CA1 synapses and enhances spatial memory. Conversely, optogenetic silencing of CA1 5-HT terminals inhibits spatial memory. We furthermore find that synaptic potentiation is mediated by 5-HT4 receptors and that systemic modulation of 5-HT4 receptor function can bidirectionally impact memory formation. Collectively, these data reveal powerful modulatory influence of serotonergic synaptic input on hippocampal function and memory formation.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Memoria Espacial/fisiología , Animales , Axones/metabolismo , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Hipocampo , Potenciación a Largo Plazo , Memoria , Ratones , Inhibición Neural/fisiología , Optogenética , Serotonina/fisiología , Transmisión Sináptica
13.
J Alzheimers Dis ; 64(s1): S497-S505, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29562522

RESUMEN

Neurogenesis occurs in a limited number of brain regions during adulthood. Of these, the hippocampus has attracted great interest due to its involvement in memory processing. Moreover, both the hippocampus and the main area that innervates this structure, namely the entorhinal cortex, show remarkable atrophy in patients with Alzheimer's disease (AD). Adult hippocampal neurogenesis is a process that continuously gives rise to newborn granule neurons in the dentate gyrus. These cells coexist with developmentally generated granule neurons in this structure, and both cooperative and competition phenomena regulate the communication between these two types of cells. Importantly, it has been revealed that GSK-3ß and tau proteins, which are two of the main players driving AD pathology, are cornerstones of adult hippocampal neurogenesis regulation. We have shown that alterations either promoting or impeding the actions of these two proteins have detrimental effects on the structural plasticity of granule neurons. Of note, these impairments occur both under basal conditions and in response to detrimental and neuroprotective stimuli. Thus, in order to achieve the full effectiveness of future therapies for AD, we propose that attention be turned toward identifying the pathological and physiological actions of the proteins involved in the pathogenesis of this condition.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Hipocampo/fisiopatología , Neurogénesis/fisiología , Animales , Humanos
14.
Birth Defects Res ; 109(12): 924-932, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28714607

RESUMEN

Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system (CNS) development, such sensitive periods shape the formation of neuro-circuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint, as well as the environmental context. While allowing for adaptation, such sensitive periods are also windows of vulnerability during which external and internal factors can confer risk to brain disorders by derailing adaptive developmental programs. Our group has been particularly interested in developmental periods that are sensitive to serotonin (5-HT) signaling, and impact behavior and cognition relevant to psychiatry. Specifically, we review a 5-HT-sensitive period that impacts fronto-limbic system development, resulting in cognitive, anxiety, and depression-related behaviors. We discuss preclinical data to establish biological plausibility and mechanistic insights. We also summarize epidemiological findings that underscore the potential public health implications resulting from the current practice of prescribing 5-HT reuptake inhibiting antidepressants during pregnancy. These medications enter the fetal circulation, likely perturb 5-HT signaling in the brain, and may be affecting circuit maturation in ways that parallel our findings in the developing rodent brain. More research is needed to better disambiguate the dual effects of maternal symptoms on fetal and child development from the effects of 5-HT reuptake inhibitors on clinical outcomes in the offspring. Birth Defects Research 109:924-932, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/efectos de los fármacos , Inhibidores de Captación de Serotonina y Norepinefrina/efectos adversos , Inhibidores de Captación de Serotonina y Norepinefrina/farmacocinética , Animales , Antidepresivos/farmacología , Ansiedad/inducido químicamente , Encéfalo/embriología , Niño , Desarrollo Infantil/efectos de los fármacos , Cognición/efectos de los fármacos , Depresión/inducido químicamente , Trastorno Depresivo/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Humanos , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Solución de Problemas/efectos de los fármacos , Receptores de Serotonina 5-HT1 , Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
17.
Cereb Cortex ; 26(11): 4282-4298, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27624722

RESUMEN

Significance Statement: The extracellular protein Reelin has an important role in neurological diseases, including epilepsy, Alzheimer's disease and psychiatric diseases, targeting hippocampal circuits. Here we address the role of Reelin in the development of synaptic contacts in adult-generated granule cells (GCs), a neuronal population that is crucial for learning and memory and implicated in neurological and psychiatric diseases. We found that the Reelin pathway controls the shapes, sizes, and types of dendritic spines, the complexity of multisynaptic innervations and the degree of the perisynaptic astroglial ensheathment that controls synaptic homeostasis. These findings show a pivotal role of Reelin in GC synaptogenesis and provide a foundation for structural circuit alterations caused by Reelin deregulation that may occur in neurological and psychiatric disorders.


Asunto(s)
Encéfalo/citología , Moléculas de Adhesión Celular Neuronal/metabolismo , Espinas Dendríticas/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Serina Endopeptidasas/metabolismo , Sinapsis/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/genética , Diferenciación Celular , Espinas Dendríticas/ultraestructura , Homólogo 4 de la Proteína Discs Large/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Mutación/genética , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteína Reelina , Serina Endopeptidasas/genética , Transducción de Señal/fisiología , Sinapsis/ultraestructura , Transducción Genética
18.
Cell Mol Life Sci ; 73(18): 3569-82, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27010990

RESUMEN

Adult hippocampal neurogenesis (AHN) is a key process for certain types of hippocampal-dependent learning. Alzheimer's disease (AD) is accompanied by memory deficits related to alterations in AHN. Given that the increased activity of GSK-3ß has been related to alterations in the population of hippocampal granule neurons in AD patients, we designed a novel methodology by which to induce selective GSK-3ß overexpression exclusively in newborn granule neurons. To this end, we injected an rtTA-IRES-EGFP-expressing retrovirus into the hippocampus of tTO-GSK-3ß mice. Using this novel retroviral strategy, we found that GSK-3ß caused a cell-autonomous impairment of the morphological and synaptic maturation of newborn neurons. In addition, we examined whether GSK-3ß overexpression in newborn neurons limits the effects of physical activity. While physical exercise increased the number of dendritic spines, the percentage of mushroom spines, and the head diameter of the same in tet-OFF cells, these effects were not triggered in tet-ON cells. This observation suggests that GSK-3ß blocks the stimulatory actions of exercise. Given that the activity of GSK-3ß is increased in the brains of individuals with AD, these data may be relevant for non-pharmacological therapies for AD.


Asunto(s)
Vectores Genéticos/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neuronas/metabolismo , Condicionamiento Físico Animal , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Vectores Genéticos/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Inmunohistoquímica , Ratones , Microscopía Fluorescente , Neurogénesis , Fosforilación , Retroviridae/genética , Columna Vertebral/fisiología , Proteínas tau/metabolismo
19.
Front Neuroanat ; 9: 60, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26052271

RESUMEN

The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.

20.
Neuropsychopharmacology ; 40(1): 88-112, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25178408

RESUMEN

Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation, such sensitive periods are also vulnerability windows during which external and internal factors can confer risk to disorders by derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review (1) a serotonin-sensitive period that impacts sensory system development, (2) a serotonin-sensitive period that impacts cognition, anxiety- and depression-related behaviors, and (3) a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment approaches for neuropsychiatric disorders.


Asunto(s)
Monoaminas Biogénicas/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cognición/fisiología , Emociones/fisiología , Plasticidad Neuronal/fisiología , Adulto , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...