Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 618039, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968094

RESUMEN

Climate change has already been affecting the regional suitability of grapevines with significant advances in phenology being observed globally in the last few decades. This has significant implications for New Zealand, where the wine industry represents a major share of the horticultural industry revenue. We modeled key crop phenological stages to better understand temporal and spatial shifts in three important regions of New Zealand (Marlborough, Hawke's Bay, Central Otago) for three dominant cultivars (Merlot, Pinot noir, and Sauvignon blanc) and one potential new and later ripening cultivar (Grenache). Simulations show an overall advance in flowering, véraison, and sugar ripeness by mid-century with more pronounced advance by the end of the century. Results show the magnitude of changes depends on the combination of greenhouse gas emission pathway, grape cultivar, and region. By mid-century, in the Marlborough region for instance, the four cultivars would flower 3 to 7 days earlier and reach sugar ripeness 7 to 15 days earlier depending on the greenhouse gas emission pathway. For growers to maintain the same timing of key phenological stages would require shifting planting of cultivars to more Southern parts of the country or implement adaptation strategies. Results also show the compression of time between flowering and véraison for all three dominant cultivars is due to a proportionally greater advance in véraison, particularly for Merlot in the Hawke's Bay and Pinot noir in Central Otago. Cross-regional analysis also raises the likelihood of the different regional cultivars ripening within a smaller window of time, complicating harvesting schedules across the country. However, considering New Zealand primarily accommodates cool climate viticulture cultivars, our results suggest that late ripening cultivars or extended ripening window in cooler regions may be advantageous in the face of climate change. These insights can inform New Zealand winegrowers with climate change adaptation options for their cultivar choices.

2.
Sci Total Environ ; 616-617: 785-795, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29103648

RESUMEN

The environmental and economic sustainability of future cropping systems depends on adaptation to climate change. Adaptation studies commonly rely on agricultural systems models to integrate multiple components of production systems such as crops, weather, soil and farmers' management decisions. Previous adaptation studies have mostly focused on isolated monocultures. However, in many agricultural regions worldwide, multi-crop rotations better represent local production systems. It is unclear how adaptation interventions influence crops grown in sequences. We develop a catchment-scale assessment to investigate the effects of tactical adaptations (choice of genotype and sowing date) on yield and underlying crop-soil factors of rotations. Based on locally surveyed data, a silage-maize followed by catch-crop-wheat rotation was simulated with the APSIM model for the RCP 8.5 emission scenario, two time periods (1985-2004 and 2080-2100) and six climate models across the Kaituna catchment in New Zealand. Results showed that direction and magnitude of climate change impacts, and the response to adaptation, varied spatially and were affected by rotation carryover effects due to agronomical (e.g. timing of sowing and harvesting) and soil (e.g. residual nitrogen, N) aspects. For example, by adapting maize to early-sowing dates under a warmer climate, there was an advance in catch crop establishment which enhanced residual soil N uptake. This dynamics, however, differed with local environment and choice of short- or long-cycle maize genotypes. Adaptation was insufficient to neutralize rotation yield losses in lowlands but consistently enhanced yield gains in highlands, where other constraints limited arable cropping. The positive responses to adaptation were mainly due to increases in solar radiation interception across the entire growth season. These results provide deeper insights on the dynamics of climate change impacts for crop rotation systems. Such knowledge can be used to develop improved regional impact assessments for situations where multi-crop rotations better represent predominant agricultural systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...